This SuperSeries is composed of the SubSeries listed below.
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma.
Age, Specimen part, Disease, Treatment
View SamplesHepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six HSTL cases with i(7)(q10) and three cases with ring 7 [r(7)], a rare variant aberration. Using high resolution array CGH, we prove that HSTL is characterized by the common loss of a 34.88 Mb region at 7p22.1p14.1 (3506316-38406226 bp) and duplication/amplification of a 38.77 Mb region at 7q22.11q31.1 (86259620-124892276 bp). Our data indicate that i(7)(q10)/r(7)-associated loss of 7p22.1p14.1 is a critical event in the development of HSTL, while gain of 7q sequences drives progression of the disease and underlies its intrinsic chemoresistance. Loss of 7p22.1p14.1 does not target a postulated tumor suppressor gene but unexpectedly enhances the expression of CHN2 from the remaining 7p allele, resulting in overexpression of 2-chimerin and dysregulation of a pathway involving RAC1 and NFATC2 with a cell proliferation response. Gain of 7q leads to increased expression of critical genes, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any additional recurrent mutations or gene fusions, suggesting that i(7)(q10) is the only driver event in this tumor. Our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes, including three located on chromosome 7 (CHN2, ABCB1 and PPP1R9A), distinguishing HSTL from other malignancies
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma.
Age, Specimen part, Treatment
View SamplesBalb/c donor hearts were transplanted into C57/BL6 recipients as previously described (Corry et al, 1973). Recipient mice were treated with 250g anti-CD40L mAb for tolerance induction on days 0, 2, and 4 as previously described (Jiang et al., 2011) or left untreated. On day 5 after transplantation graft infiltrating myeloid subsets were isolated using fluorescence activated cell sorting (FACS). Affymetrix Mouse Gene arrays were run in triplicate with the samples of interest. Raw CEL file data from Affymetrix Expression Console were background corrected, normalized, and summarized using RMA.
DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.
Sex, Age, Specimen part
View SamplesHistone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.
Sex, Age, Specimen part
View SamplesHistone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.
Sex, Age, Specimen part
View SamplesMiRNAs have the potential to regulate cellular differentiation programs. However, miRNA-deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions unanswered. To address this issue, we deleted Dicer1, which encodes an essential RNaseIII enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein alpha (C/EBPA)-positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA-positive progenitor cells. Analysis of gene-expression profiles from wild type and Dicer1-deficient granulocyte-macrophage progenitors (GMPs) revealed that 20 miRNA families were active in GMPs. Of the derepressed miRNA targets in Dicer1-null GMPs, 27% are normally exclusively expressed in HSCs or are specific for multi-potent progenitors and erythropoiesis, indicating an altered gene-expression landscape. Dicer1-deficient GMPs were defective in myeloid development in vitro and exhibited an increased replating capacity, indicating a regained self-renewal potential of these cells. In mice, Dicer1 deletion blocked monocytic differentiation, depleted macrophages and caused myeloid dysplasia with morphological features of Pelger-Hut anomaly. These results provide evidence for a miRNA-controlled switch for a cellular program of self-renewal and expansion towards myeloid differentiation in GMPs.
Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice.
Specimen part
View SamplesTo identify cellular and genetic abnormalities involved in interstrand cross link repair-deficient bone marrow failure and its transformation to leukemia, we used an Ercc1 hypomorphic mouse model (Ercc1 -/d).
ICL-induced miR139-3p and miR199a-3p have opposite roles in hematopoietic cell expansion and leukemic transformation.
Age, Specimen part
View SamplesC/EBPalpha is a transcription factor critically involved in myeloid development and indispensable for formation of granulocytes. To track the cellular fate of stem and progenitor (LSK) cells, which express C/EBPalpha, we developed a mouse model expressing Cre recombinase from the Cebpa promoter and an inducible EYFP allele. We show that Cebpa/EYFP+ cells represent a significant subset of LSK cells, which predominantly give rise to myeloid cells in steady state hematopoiesis.
Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.
Specimen part
View SamplesRNA-seq analysis was performed between WT and alphaT-cat KO mouse cerebella aiming to discover gene transcripts altered by the loss of alphaT-cat These altered gene transcripts could be associated with several neurologic disease-relevant pathways Overall design: Total RNA extracted of cerebellar tissue (n=3) from the brains of WT ad alphaT-cat KO mice
αT-catenin in restricted brain cell types and its potential connection to autism.
Specimen part, Subject
View Samples