Our hypothesis was that at any given point in time, islets will contain differing populations of beta cells at different stages of their lifecycle, with further changes occurring with metabolic stress and aging. We examined subpopulations of beta cells isolated from MIP-GFP mice on the basis of their insulin transcriptional activity and in their expression of p16Ink4a. In addition, using aging C57Bl/6 mice as a model, markers of beta cell aging were identified and validated: Igf1r and Cd99 expression increased with age, whereas Kcnq5 was decreased with age. These markers were correlated with an age-related decline in function. The functional aging of beta cells was accelerated by S961, an antagonist to the insulin receptor, which induced insulin resistance. Particularly surprising was the finding of marked islet heterogeneity as demonstrated with the marked staining differences of the markers: Igf1r, Cd99 and Kcnq5. These novel findings about beta cell and islet heterogeneity, and how they change with age, open up an entirely new set of questions that must be addressed about the pathogenesis of type 2 diabetes. The present study has identified new markers of aging in beta cells and found that the expression of these and other markers can be increased by insulin resistance. This provides insight into how insulin resistance might accelerate the death of beta cells. In addition, striking heterogeneity among islets was found, which opens up new ways to think about islet biology and the pathogenesis of T2D.
β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance.
Age, Specimen part
View SamplesThe ubiquitous efflux transporter ATP-binding cassette sub-family C member 5 (ABCC5) is present at high levels in the blood-brain barrier, neurons and glia, but its in vivo substrates and function are not known. Untargeted metabolomic screens revealed that Abcc5-/- mice accumulate endogenous glutamate conjugates and analogs in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate (NAAG), for example, was over 2-fold higher in Abcc5-/- brain. In line with ABCC5-mediated transport, the metabolites that accumulated in Abcc5-/- tissues were depleted in cultured cells that overexpressed human ABCC5. Using membrane vesicles, we show that ABCC5 not only transports the metabolites detected in our screen, but also a wide range of peptides containing a C-terminal glutamate. Glutamate conjugates are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. We found that ABCC5 also transports exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid and N-methyl-D-aspartate (NMDA) and the therapeutic glutamate analog ZJ43. Taken together, we have identified ABCC5 as a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins and drugs. Overall design: A set of 5 wildtype brains was compared to a set of 5 Abcc5-knockout mouse brains
ATP-binding Cassette Subfamily C Member 5 (ABCC5) Functions as an Efflux Transporter of Glutamate Conjugates and Analogs.
No sample metadata fields
View SamplesLMO2 overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as main pre-leukemic event. The effects of LMO2 overexpression on human T-cell development in vivo, however, are unknown. Here we report studies of a humanized mouse model transplanted with LMO2 transduced human hematopoietic stem and progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage although initially multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: 1) a block at the DN/ISP stage, 2) an accumulation of CD4+CD8+ double positive CD3- cells and 3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes
Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms.
Specimen part
View SamplesThe spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased, and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts the degree of this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes. Overall design: RNAseq was performed in control, ?WAPL 3.3, ?WAPL 1.14, ?SCC4 and ?WAPL/?SCC4 cells in triplicate.
The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.
Cell line, Subject
View SamplesTo gain more insight into initiation and regulation of T cell receptor (TCR) gene rearrangement during human T cell development, we analyzed TCR gene rearrangements by quantitative PCR analysis in nine consecutive T-cell developmental stages, including CD34+ lin- cord blood cells as a reference. The same stages were used for gene expression profiling using DNA microarrays.
New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling.
Specimen part
View SamplesT cells develop from progenitors that migrate from the bone marrow into the thymus. Thymocytes are subdivided roughly as being double negative (DN), double positive (DP), or single positive (SP), based on the expression of the CD4 and CD8 coreceptors. The DN stage is heterogeneous and can be subdivided into four distinct subsets in mice based on the expression of CD44 and CD25. In human, three distinct DN stages can be recognized: a CD34+CD38CD1a stage that represents the most immature thymic subset and the consecutive CD34+CD38+CD1a and CD34+CD38+CD1a+ stages. Human DN thymocytes mature via an immature single positive (ISP CD4+) and a DP stage into CD4+ or CD8+ SP T cells that express functional T cell receptors (TCR) and that exit the thymus. In this study, gene expression was measured in each of these nine stages.
New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling.
No sample metadata fields
View SamplesBackground In childhood acute lymphoblastic leukemia (ALL), central nervous system (CNS) involvement is rare at diagnosis (1-4%), but more frequent at relapse (~30%). Minimal residual disease diagnostics predict most bone marrow (BM) relapses, but likely cannot predict isolated CNS relapses. Consequently, CNS relapses may become relatively more important. Because of the significant late sequelae of CNS treatment, early identification of patients at risk of CNS relapse is crucial. Methods Gene expression profiles of ALL cells from cerebrospinal fluid (CSF) and ALL cells from BM were compared and differences were confirmed by real-time quantitative PCR. For a selected set of overexpressed genes, protein expression levels of ALL cells in CSF at relapse and of ALL cells in diagnostic BM samples were evaluated by 8-color flow cytometry. Results CSF-derived ALL cells showed a clearly different gene expression profile than BM-derived ALL cells, with differentially-expressed genes (including SCD and OPN) involved in survival and apoptosis pathways and linked to the JAK-STAT pathway. Flowcytometric analysis showed that a subpopulation of ALL cells (>1%) with a CNS signature (SCD positivity and increased OPN expression) was already present in BM at diagnosis in ALL patients who later developed a CNS relapse, but was <1% or absent in virtually all other patients. Conclusions The presence of a subpopulation of ALL cells with a CNS signature at diagnosis may predict isolated CNS relapse. Such information can be used to design new diagnostic and treatment strategies that aim at prevention of CNS relapse with reduced toxicity.
New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric B-cell precursor acute lymphoblastic leukaemia.
Sex, Age, Time
View SamplesIncreased miR-135a levels are observed in human patients with temporal lobe Epilepsy (TLE) and in experimental animal models. Upon targeting the increased miR-135a levels in vivo using antagomirs in kainic acid induced status epilepticus mouse model of TLE, we observed a strong reduction of spontaneous recurrent seizures. To understand this further and to find target mRNAs that potentially mediate the seizure suppressive function of miR-135a, we performed immunoprecipitation using biotin tagged miRNA mimics, followed by RNAsequencing (RNAseq). We found several novel neuronal targets of miRNA-135a and identified Mef2a as a key target in this study. Here we report the total RNAseq data. Overall design: N2A cells were transfected with biotin tagged miRNA mimics for miR-135a and negative control and immunoprecipitations were performed. N = 3 replicates of IP and input samples for each condition were generated and sequenced on illumina platform for total RNA for identification of novel targets of miR-135a.
Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures.
Cell line, Subject
View SamplesBackground. Cellular senescence is a mechanism that virtually irreversibly suppresses the proliferative capacity of cells in response to various stress signals. This includes the expression of activated oncogenes, which cause Oncogene-Induced Senescence (OIS). A body of evidence points to the involvement of chromatin reorganization, including the formation of senescence-associated heterochromatic foci (SAHF). The nuclear lamina (NL) is an important contributor to genome organization and has been involved in cellular senescence and organismal aging. It interacts with multiple regions of the genome called lamina-associated domains (LADs). Some LADs are cell type-specific, while others are conserved between cell types and are referred to as constitutive LADs. Here, we used DamID to investigate the changes in genome-NL interactions in a model of OIS triggered by the expression of the BRAFV600E oncogene.Results. We found that OIS cells lose most of their constitutive LADs (cLADS), suggesting the loss of a specific mechanism that targets cLADs to the NL. In addition, multiple genes relocated to the NL. Unexpectedly, they were not repressed, implying the abrogation of the repressive activity of the NL during OIS. Finally, OIS cells displayed an increased association of telomeres with the NL.Conclusions. Our study reveals that senescent cells acquire a new type of LAD organization and suggest the existence of as yet unknown mechanisms that tether cLADs to the NL and repress gene expression at the NL.
Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.
Specimen part, Cell line, Subject, Time
View SamplesWe derived gene set signature for GSEA investigation study from primary cell culture derived from healthy patients. Cells were exposed or not to cytokine for 24H before RNA collection and microarray analysis
Selective inhibition of TGF-β1 produced by GARP-expressing Tregs overcomes resistance to PD-1/PD-L1 blockade in cancer.
Specimen part, Treatment
View Samples