Analysis of glucose and Lipid metabolism in male and female offspring after protein restriction of the mother
Sex-dependent programming of glucose and fatty acid metabolism in mouse offspring by maternal protein restriction.
Sex, Specimen part
View SamplesThis experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesOculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease caused by an alanine tract expansion mutation in Poly(A)-binding protein nuclear 1 (expPABPN1). To model OPMD in a myogenic and physiological context, we generated mouse myoblast cell clones stably expressing either human wild type (WT) or expPABPN1 at low levels. The transgene expression is induced upon myotube differentiation and results in formation of insoluble nuclear PABPN1 aggregates that are similar to the in vivo aggregates. Quantitative analysis of PABPN1 protein in myotube cultures revealed that expPABPN1 accumulation and aggregation is greater than that of the WT protein. In a comparative study we found that aggregation of expPABPN1 is more affected by inhibition of proteasome activity, as compared with the WT PABPN1 aggregation. Consistent with this, in myotubes cultures expressing expPABPN1 deregulation of the proteasome was identified as the most significantly deregulated pathway. Differences in the accumulation of soluble WT and expPABPN1 were consistent with differences in ubiquitination and protein turnover. This study indicates, for the first time, that in myotubes the ratio of soluble to insoluble expPABPN1 is significantly lower compared to that of the WT protein. We suggest that this difference can contribute to muscle weakness in OPMD.
Modeling oculopharyngeal muscular dystrophy in myotube cultures reveals reduced accumulation of soluble mutant PABPN1 protein.
Cell line
View SamplesProfile gene expression from tumors that develop in mice bearing conditional activation of EWS-ATF1, compared to control mouse tissues from the chest wall as well as tumor samples from mouse models of synovial sarcoma and osteosarcoma achieved by conditional disruption of Rb1 and p53 Overall design: 13 clear cell sarcomas (5 started with Rosa26CreER, 4 with TATCre, 2 with Prx1CreERT2, and 2 with Bmi1IRESCreERT2), 7 osteosarcomas, 6 synovial sarcomas, 6 control samples
Modeling clear cell sarcomagenesis in the mouse: cell of origin differentiation state impacts tumor characteristics.
Specimen part, Subject
View SamplesIn Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal (CRC) patients. For most, organoids were also generated from adjacent normal tissue. The organoids closely resemble the original tumor. The spectrum of genetic changes observed within the 'living biobank' agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to robotized, high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43 (rather than in APC). Organoid technology may fill the gap between cancer genetics and patient trials, complement cell line- and xenograft-based drug studies and allow personalized therapy design.
Prospective derivation of a living organoid biobank of colorectal cancer patients.
Specimen part, Disease, Disease stage, Subject
View SamplesThis work is part of an existing collaboration between the two laboratories, funded by the EU (EU-RTN-INTEGA). Both parties will share the cost of this microarray experiment. Background: We have demonstrated that ethylene-insensitive mutants and wild type(col-0) Arabidopsis plants treated with an ethylene perception inhibitor have increased levels of expression of genes, such as GASA1 and g-TIP, that are thought to be regulated by GA (Vriezen et al, unpublished results). However, this observation was based on an RNA gel blot analysis and therefore limited to few genes. Aim: To investigate whether plants with decreased ethylene perception are generally hypersensitive to GA or whether this effect is restricted to specific genes. We plan to undertake a complete transcriptome analysis of GA-treated wild type andetr1-1 plants. The aim is to identify genes that are induced directly as a result of the GA treatment, and we will therefore focus on the time window 0-3h. Tissues to be sampled: Plants will be grown in vitroon MS/2 containing 1% sucrose, pH 5.7, at 22 C,70% RH, under white light (54 PAR) and a photoperiod of 16h light/8h dark. Plants will be treated at 14 days and harvested entirely, i.e. roots and shoots are extracted together. Experimental set-up: Col-0 and the ethylene-insensitive mutant etr1-1 will be sprayed with 50 microM GA4 in water. GA4 is the major bio-active GA in Arabidopsis. Samples will be taken after 0, 30 min, 1h, and 3h. In order to correct for touch-induced genes a control, which is sprayed with water only and harvested at 1h, will be included for both genotypes. The total number of chips to be hybridized is 10. The time course with 4 data points is preferred to a single time point with 3 repeats, because it will allow us to follow the induction kinetics and identify early response genes. For each timepoint, RNA will be extracted from at least 40 individuals.
Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana.
Specimen part
View SamplesIt is currently accepted that the human brain has a limited neurogenic capacity and an impaired regenerative potential. We have previously shown the existence of CD271-expressing neural stem cells (NSCs) in the subventricular zone (SVZ) of Parkinson's disease (PD) patients, which proliferate and differentiate towards neurons and glial cells in vitro. To study the molecular profile of these NSCs in detail, we performed RNA sequencing and mass spectrometry on CD271+ NSCs isolated from human post-mortem SVZ and on homogenates of the SVZ. CD271+ cells were isolated through magnetic cell separation (MACS). We first compared the molecular profile of CD271+ NSCs to the SVZ homogenate from control donors to assess the CD271+ NSCs gene signature and finally made a comparison between controls and PD patients to establish a specific molecular profile of NSCs and the SVZ in PD. While our transcriptome analysis did not identify any differentially expressed genes in the SVZ between control and PD patients, our proteome analysis revealed several proteins that were differentially expressed in PD. Some of these proteins are involved in cytoskeletal organization and mitochondrial function. Transcriptome and proteome analyses of NSCs from PD revealed changes in the expression of genes and proteins involved in metabolism, transcriptional activity and cytoskeletal organization. Our results not only confirm pathological hallmarks of PD (e.g. impaired mitochondrial function), but also suggest that NSCs may transit into a primed-quiescent state, that is in an “alert” non-proliferative phase in PD. Overall design: From post-mortem human SVZ of control and Parkinson disease donors we isolated CD271+ NSCs and Cd11b+ microglia by MACS and the whole SVZ to generate RNA sequencing libraries using Celseq2 method. We aimed for low coverage sequencing (~2 million mapped to the coding regions) per sample to investigate the gross changes in the transcriptome. Libraries (rpi small primer) were sequenced in 3 runs, 2 on an Illumina NextSeq500 using 75-bp paired-end sequencing at the Utrecht Seuqencing center (USEQ) and the third on a HiSeq4000 using 150-bp paired-end sequencing at Genomescan. All the samples were mapped in a single run to an average depth of ~10 million reads per sample. Reads were mapped to the latest human coding transcriptome using bwa, normalized and analyzed using the standard DESEQ2 package.
Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease.
Specimen part, Subject
View SamplesWe aimed to determine the characteristic of IL-10-producing ILCs induced from ILC2s by RA. We found that IL-10-producing ILCs has distinct characteristic compared to IL-10 negative ILCs. Overall design: mRNA profile of IL-10 positive ILCs and IL-10 negative ILCs genarated from ILC2s
A novel proangiogenic B cell subset is increased in cancer and chronic inflammation.
Specimen part, Subject
View SamplesWe have ablated TAF10 in the erythroid compartment only by crossing the TAF10lox mice with the EpoR-Cre mice and we have studied the development of the erythroid cells in vivo. TAF10 ablation led to embryonic death at E13.5 while at E12.5 there was a clear developmental defect which was reflected in the transcriptional profile of the fetal liver cells. Gata1-target genes were mostly affected and were responsible for the lethal phenotype. Overall design: mRNA from E12.5 fetal livers of TAF10lox/KO:EpoR-Cre+/- (TAF10KO) mice, TAF10HET and WT mice was profiled by NGS (Illumina).
TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.
No sample metadata fields
View SamplesHeparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analog of the HS constituent GlcNAc and studied the compounds metabolic fate and its effect on angiogenesis. The 4-deoxy analog was activated intracellularly into UDP-4-deoxy-GlcNAc and HS expression was inhibited up to ~96% (IC50 = 16 M). HS chain size was reduced, without detectable incorporation of the 4-deoxy analog, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Micro-injection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis which hampers pro-angiogenic signaling and neo-vessel formation.
Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis.
Cell line, Treatment
View Samples