In this study we studied the presence of tumor cells that underwent epithelial-to-mesenchymal transition within polyoma middle T antigen (PyMT) breast tumors. For this we dissociated tumors and isolated Ecad positive tumor cells by FACS sorting. We confirmed that PyMT tumors contain a small set of tumor cells that have undergone EMT in the primary tumor and that E-cadherin can be used as a marker on single cell level for mesenchymal status in this model. Overall design: (i) We isolated primary tumors from mice, dissociated the tumors and FACS-sorted for single Ecad positive tumor cells, after this we performed single cell sequencing of the cells. (ii) We isolated CTCs and solid tumor cells from mice, dissociated the tumors and FACS-sorted for single Ecad positive and negative cells, after this we performed single cell sequencing of the cells.
Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.
Sex, Disease
View SamplesTranscriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.
Sex, Disease
View SamplesTranscriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.
Sex, Disease
View SamplesLgr5+ stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF and Notch signals to neighboring Lgr5+ stem cells. While the colon lacks Paneth cells, Deep Crypt Secretory (DCS) cells are intermingled with Lgr5+ stem cells at crypt bottoms. Here, we report Reg4 as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon mini-gut formation. In agreement, sorted Reg4+ DCS cells promote organoid formation of single Lgr5+ colon stem cells. Stem cells are forced to generate DCS cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4+ DCS cells serve as Paneth cell equivalents in the colon crypt niche. Overall design: To define a global gene expression signature of DCS cells, we performed RNA-sequencing (RNA-seq) of sorted Reg4-dsRed+ and Lgr5-GFP+ cells from colonic epithelium. Sorting and RNA-seq library preparation was performed twice, to obtain a biological replicate.
Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon.
No sample metadata fields
View SamplesThe mammary gland is a highly dynamic organ that mainly develops during puberty. Based on morphology and proliferation analysis, mammary stem cells (MaSCs) are thought to be close to or reside in the terminal end buds (TEBs) during pubertal development. However, exclusive stem cell markers are lacking, and therefore the true identity of MaSCs, including their location, multiplicity, dynamics and fate during branching morphogenesis, has yet to be defined. To gain more insights into the molecular identity and heterogeneity of the MaSC pool, we performed single cell transcriptome sequencing of mammary epithelial cells micro-dissected from ducts and TEBs during puberty. These data show that the behaviour of MaSCs cannot be directly linked to a single expression profile. Instead, morphogenesis of the mammary epithelium relies upon a heterogeneous population of MaSCs that functions long-term as a single equipotent pool of stem cells. Overall design: Ducts and terminal end buds were micro-dissected from the 4th and the 5th murine mammary gland at 5 weeks-of-age, dissociated into single cells, and FACS sorted. Single-cell transcriptomics was performed on live cells using an automated version of CEL-seq2 on live, FACS sorted cells. The StemID algorithm was used to identify clusters of cells corresponding to basal and luminal cells types derived from ducts and terminal end buds.
Identity and dynamics of mammary stem cells during branching morphogenesis.
Cell line, Subject
View SamplesOrganoid technology provides the possibility to culture human colon tissue and patient-derived colorectal cancers (CRC) while maintaining all functional and phenotypic characteristics. Labeling of human colon stem cells (CoSCs), especially in normal and benign tumor organoids, is challenging and therefore limits usability of multi-patient organoid libraries for CoSC research. Here, we developed STAR (STem cell Ascl2 Reporter), a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5+ CoSC fate. Among others via lentiviral infection, STAR minigene labels stem cells in normal as well as in multiple engineered and patient-derived CRC organoids of different stage and genetic make-up. STAR revealed that stem cell driven differentiation hierarchies and the capacity of cell fate plasticity (de-differentiation) are present at all stages of human CRC development. The flexible and user-friendly nature of STAR applications in combination with organoid technology will facilitate basic research on human adult stem cell biology. Overall design: Cells from different colon organoid types were FACS sorted for stem STemness Ascl2 Reporter activity for transcriptome profiling by RNA-seq.
Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene.
Subject
View SamplesMost human cancers present hyperactivated sumoylation, and cancer cell lines are usually highly sensitive to the lack of it, supporting potential application of sumoylation chemical inhibitors in cancer therapy. Here, we explored the impact of hyposumoylation (Ubc9 haploinsufficiency) on cancer development in mice using Apc loss-driven intestinal tumorigenesis model.
An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency.
Specimen part
View SamplesThe Lgr5+ intestinal stem cell, Paneth and transit-amplifying cell compartment constitute the intestinal crypt which is the constant source of differentiated epithelial cells that replenish the intestinal villi ensuring organ maintenance and regeneration. The Lgr5+ crypt-based columnar (CBC) cells have been identified as the intestinal stem cells (ISCs) and, importantly, as cells-of-origin of intestinal cancer.
An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency.
Specimen part
View SamplesComparative RNA profiling between tumor cells and their secreted extracellular vesicles. Results revealed enrichment in genes involved in cellular migration and metastasis in extracellular vesicles, in agreement with their role as mediators of tumor progression.
In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior.
Cell line
View Samples