Huntingtons disease (HD) is a devastating disease for which currently no therapy is available. It is a progressive autosomal dominant neurodegenerative disorder that is caused by a CAG repeat expansion in the HD gene, resulting in an expansion of polyglutamines at the N-terminal end of the encoded protein, designated huntingtin, and the accumulation of cytoplasmic and nuclear aggregates. Not only is there a loss of normal huntingtin function, upon expansion of the CAG repeat there is also a gain of toxic function of the huntingtin protein and this affects a wide range of cellular processes. To identify groups of genes that could play a role in the pathology of Huntingtons disease, we studied mRNA changes in an inducible PC12 model of Huntingtons disease before and after aggregates became visible. This is the first study to show the involvement Nrf2-responsive genes in the oxidative stress response in HD. Oxidative stress related transcripts were altered in expression suggesting a protective response in cells expressing mutant huntingtin at an early stage of cellular pathology. Furthermore, there was a down-regulation of catecholamine biosynthesis resulting in lower dopamine levels in culture. Our results further demonstrate an early impairment of transcription, the cytoskeleton, ion channels and receptors. Given the pathogenic impact of oxidative stress and neuroinflammation, the Nrf2-ARE signaling pathway is an attractive therapeutic target for neurodegenerative diseases.
Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease.
No sample metadata fields
View SamplesOculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder caused by a poly-alanine expansion mutation in PABPN1. The hallmark of OPMD is the accumulation of the mutant protein in insoluble nuclear inclusions. The molecular mechanisms associated with disease onset and progression are unknown. We performed a high-throughput cross-species transcriptome study of affected muscles from two OPMD animal models and from patients at pre-symptomatic and symptomatic stages. The most consistently and significantly OPMD-deregulated pathway across species is the ubiquitin-proteasome system (UPS). By analyzing expression profiles, we found that the majority of OPMD-deregulated genes are age-associated. Based on expression trends, disease onset can be separated from progression; the expression profiles of the proteasome-encoding genes are associated with onset but not with progression. In a muscle cell model, proteasome inhibition and the stimulation of immunoproteasome specifically affect the accumulation and aggregation of mutant PABPN1. We suggest that proteasome down-regulation during muscle aging triggers the accumulation of expPABPN1 that in turn enhances proteasome deregulation and leads to intranuclear inclusions (INI) formation.
Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients.
Sex, Age, Disease, Disease stage
View SamplesCrossing of hDMD mice that contain the full-length 2.3 Mb hDMD gene were crossed with dystrophin-deficient mdx mice and dystrophin and utrophin double-deficient mdx x utrn-/- mice resulted in a full rescue of the dystrophic features of these mice, as concluded from histological analysis. Analysis on Affymetrix gene chips demonstrated that also expression profiles of the dystrophic mice were normalized by crossing with transgenic hDMD mice. This confirms the full functionality of the hDMD transgene in mice.
Generation and characterization of transgenic mice with the full-length human DMD gene.
No sample metadata fields
View SamplesThe aim of the present study was to compare, on a statistical basis, the performance of different microarray platforms to detect differences in gene expression in a realistic and challenging biological setting. Gene expression profiles in the hippocampus of five wild-type and five transgenic C-doublecortin-like kinase mice were evaluated with five microarray platforms: Applied Biosystems, Affymetrix, Agilent, Illumina and home-spotted oligonucleotide arrays. We observed considerable overlap between the different platforms, the overlap being better detectable with significance level-based ranking than with a p-value based cut-off. Confirming the qualitative agreement between platforms, Pathway analysis consistently demonstrated aberrances in GABA-ergic signalling in the transgenic mice, even though pathways were represented by only partially overlapping genes on the different platforms.
Can subtle changes in gene expression be consistently detected with different microarray platforms?
No sample metadata fields
View SamplesRORt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.
RORγt⁺ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44.
Specimen part, Treatment
View SamplesA single replicate of exponentially growing DT40 CL18 chicken B lymphoma cells were harvested and extracted RNA was subjected to Illumina GAIIx paired-end sequencing to determine global gene expression. Overall design: Single replicate RNA-seq expression analysis of DT40 cells.
Third Report on Chicken Genes and Chromosomes 2015.
Specimen part, Cell line, Subject
View SamplesGlucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates
TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.
Specimen part, Cell line, Treatment, Subject
View SamplesThis experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesMesenchymal progenitor cells can be differentiated in vitro into myotubes that exhibit many characteristic features of primary mammalian skeletal muscle fibers. However, in general, they do not show the functional excitation-contraction coupling or the striated sarcomere arrangement typical of mature myofibers. Epigenetic modifications have been shown to play a key role in regulating the progressional changes in transcription necessary for muscle differentiation. In this study, we demonstrate that treatment of murine C2C12 mesenchymal progenitor cells with 10 M of the DNA methylation inhibitor 5-azacytidine (5AC) promotes myogenesis, resulting in myotubes with enhanced maturity as compared to untreated myotubes. Specifically, 5AC treatment resulted in the upregulation of muscle genes at the myoblast stage while at later stages nearly 50 % of the 5AC-treated myotubes displayed a mature, well-defined sarcomere organization as well as spontaneous contractions that coincided with action potentials and intracellular calcium transients. Both the percentage of striated myotubes and their contractile activity could be inhibited by 20 nM TTX, 10 M ryanodine and 100 M nifedipine, suggesting that action potential-induced calcium transients are responsible for these characteristics. Our data suggest that genomic demethylation induced by 5AC overcomes an epigenetic barrier that prevents untreated C2C12 myotubes from reaching full maturity.
Epigenetics: DNA demethylation promotes skeletal myotube maturation.
Cell line, Treatment
View SamplesGenetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting an essential driver role for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34+ thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from GSI treated T-ALL cell lines, ex vivo isolated Notch active CD34+ and Notch inactive CD4+CD8+ thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publically available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T-cell context. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way towards development of novel therapeutic strategies that target hyperactive Notch1 signaling in human T-cell acute lymphoblastic leukemia. Overall design: CUTLL1 cell lines were treated with Compound E (GSI) or DMSO (solvent control). Cells were collected 12 h and 48 h after treatment. This was performed for 3 replicates. RNA-sequencing was performed on these samples.
The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.
No sample metadata fields
View Samples