Sorafenib leads to a survival benefit in patients with advanced hepatocellular carcinoma but its use is hampered by the occurrence of drug resistance. To investigate the molecular mechanisms involved we developed five resistant human liver cell lines in which we studied morphology, gene expression and invasive potential. The cells changed their appearance, lost E-cadherin and KRT19 and showed high expression of vimentin, indicating epithelial-to-mesenchymal transition. Resistant cells showed reduced adherent growth, became more invasive and lost liver-specific gene expression. Furthermore, following withdrawal of sorafenib, the resistant cells showed rebound growth, a phenomenon also found in patients. This cell model was further used to investigate strategies for restoration of sensitivity to sorafenib.
Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth.
Cell line
View SamplesHigh uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level, remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knock down of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium. Overall design: Puromycin-selected HUVEC (Human Umbilical Vein Endothelial Cells, Lonza, Switzerland) cells, expressing either scrambled control (SCR) or anti-EZH2 short-hairpin (shEZH2) constructs (at total 7 days after the first viral transduction), were used in FSS experiments (72h of control static culture or exposure to 20 dynes/cm2 of fluid shear stress, using Ibidi pump system (in µ-Slides I 0.4 Luer, Ibidi, Planegg/Martinsried, Germany)). Each replicate experiment consisted of viral transductions and puromycin selection of a separate HUVEC batch, followed by the FSS experiment. Two FSS experimental sets of the same HUVEC batch were run every time in parallel and lysed at the same end time point, one in RNAse-free conditions with RNA-Easy Mini Plus kit RLT Plus lysis buffer (QIAGEN, Venlo, The Netherlands), and one with RIPA buffer. The RIPA-lysates were analyzed with Western blotting and confirmed the complete (no protein present) knock-down of EZH2. From the RNA-lysates, RNA was isolated using the RNA-Easy Mini Plus kit (QIAGEN, Venlo, The Netherlands). High quality RNA samples (pre-assessed by Nanodrop measurements) were further processed in the Genome Analysis Facility of the University Medical Center Groningen. The RNA quality and integrity were verified using PerkinElmer Labchip GX with a cut-off value of 9 (scale 1 to 10, where 9 is very high quality RNA). RNA library was created in accordance with the TruSeqTM RNA Sample Preparation v2 Guide (Illumina, San Diego, CA, USA), using the PerkinElmer Sciclone liquid handler, resulting in 330bp cDNA fragments. The paired-end sequencing (100bp reads) was performed using the Illumina HiSeqTM 2500. (Quoted from the Materials and Methods of the related manuscript, with adjustments).
The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.
No sample metadata fields
View SamplesT-cell/histiocyte rich B cell lymphoma (THRBL) and nodular lymphocyte predominant Hodgkin's lymphoma (NLPHL) share some morphological characteristics, including a prominent stromal reaction, but display a markedly different prognosis. To investigate the difference between the stromal reactions of these lymphomas at the molecular level, we performed microarray expression profiling on a series of THRBL and NLPHL cases.
T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response.
Sex, Specimen part
View SamplesFsh-mediated regulation of zebrafish spermatogenesis includes modulating the expression of testicular growth factors. Here, we study if and how two Sertoli cell-derived Fsh-responsive growth factors, anti-Müllerian hormone (Amh; inhibiting steroidogenesis and germ cell differentiation) and insulin-like growth factor 3 (Igf3; stimulating germ cell differentiation), cooperate in regulating spermatogonial development. In dose response and time course experiments with primary testis tissue cultures, Fsh upregulated igf3 transcript levels and down-regulated amh transcript levels; igf3 transcript levels were more rapidly up-regulated and responded to lower Fsh concentrations than were required to decrease amh mRNA levels. Quantification of immunoreactive Amh and Igf3 on testis sections showed that Fsh increased slightly Igf3 staining but decreased clearly Amh staining. Studying the direct interaction of the two growth factors showed that Amh compromised Igf3-stimulated proliferation of type A (both undifferentiated [Aund] and differentiating [Adiff]) spermatogonia. Also the proliferation of those Sertoli cells associated with Aund spermatogonia was reduced by Amh. To gain more insight into how Amh inhibits germ cell development, we examined Amh-induced changes in testicular gene expression by RNA sequencing. The majority (69%) of the differentially expressed genes was down-regulated by Amh, including several stimulators of spermatogenesis, such as igf3 and steroidogenesis-related genes. At the same time, Amh increased the expression of inhibitory signals, such as inha and id3, or facilitated prostaglandin E2 (PGE2) signaling. Evaluating one of the potentially inhibitory signals, we indeed found in tissue culture experiments that PGE2 promoted the accumulation of Aund at the expense of Adiff and B spermatogonia. Our data suggest that an important aspect of Fsh bioactivity in stimulating spermatogenesis is implemented by restricting the different inhibitory effects of Amh and by counterbalancing them with stimulatory signals, such as Igf3 Overall design: 10 samples in total were analyzed: 5 biological replicates from control testis samples and 5 biological replicates from Amh-treated testis samples (all co-incubated with 11KT)
Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh.
No sample metadata fields
View SamplesThe transcriptional coactivator ANGUSTIFOLIA 3 (AN3) stimulates cell proliferation during Arabidopsis leaf development, but the molecular mechanism is largely unknown. We show here that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR 2 (CRF2), CONSTANS-LIKE 5 (COL5), HECATE 1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED (SYD). Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoter of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.
ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.
Specimen part, Time
View SamplesWe performed gene expression profiling of 26 colorectal tumors and matched histologically normal adjacent colonic tissue samples using the Illumina Ref-8 whole-genome expression BeadChip. We performed an integrated analysis of promoter DNA methylation and gene expression data to investigate the effects of DNA hypermethylation on gene expression.
Genome-scale analysis of aberrant DNA methylation in colorectal cancer.
Sex, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integration Analysis of Three Omics Data Using Penalized Regression Methods: An Application to Bladder Cancer.
Specimen part
View SamplesOmics data integration is becoming necessary to investigate the still unknown genomic mechanisms of complex diseases. During the integration process, many challenges arise such as data heterogeneity, the smaller number of individuals in comparison to the number of parameters, multicollinearity, and interpretation and validation of results due to their complexity and lack of knowledge about biological mechanisms. To overcome some of these issues, innovative statistical approaches are being developed. In this work, we applied penalized regression methods (LASSO and ENET) to explore relationships between common genetic variants, DNA methylation and gene expression measured in bladder tumor samples and have proposed a permutation-based method to concomitantly assess significance and correct by multiple testing with the MaxT algorithm. The overall analysis flow consisted of three steps: (1) SNPs/CpGs were selected per each gene probe within 1Mb window upstream and downstream the gene; (2) LASSO and ENET were applied to assess the association between each expression probe and the selected SNPs/CpGs in three multivariable models (SNP, CPG, and Global models, the latter integrating SNPs and CPGs); and (3) the significance of each model was assessed using the permutation-based MaxT method. We identified 48 genes whom expression levels were associated with both SNPs and GPGs. Importantly, we replicated results for 36 (75%) of them in an independent data set (TCGA). We checked the performance of the proposed method with a simulation study and further supported our results with a biological interpretation based on an enrichment analysis. The approach we propose allows reducing computational time and is flexibly and easy to implement when analyzing several omics data. Our results highlight the importance of integrating omics data by applying appropriate statistical strategies to discover new insights into the complexity of disease genetic mechanisms.
Integration Analysis of Three Omics Data Using Penalized Regression Methods: An Application to Bladder Cancer.
Specimen part
View SamplesPrdm12, a novel key regulator of the Nerve Growth Factor-TrkA signaling pathway, is required for nociceptive sensory neuron development Overall design: RNA-seq analysis in triplcate of the transcriptome of thoracic dorsal root ganglia with associated spinal cord of E11.5 Prdm12 KO and WT embryos.
Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA.
Specimen part, Cell line, Subject
View SamplesThe epithelial to mesenchymal transition (EMT) of malignant hepatocytes is a crucial event in hepatocellular carcinoma (HCC) progression and recurrence. We aimed to establish a human model of EMT to examine drug efficacy and specificity in HCC progression. Human HCC cell populations were characterized by immunofluorescence analysis, migration and invasion assays, array comparative genomic hybridization, whole-genome expression profiling and promoter methylation. Therapeutic agents clinically used against HCC were examined for efficacy by determination of IC50 values. Liver cancer cell lines showed either an epithelial or mesenchymal phenotype of which latter showed strong migratory and invasive abilities in vitro. The common cellular origin of both cell types indicated that mesenchymal HCC cells have been derived from epithelial hepatocytes through EMT in the HCC patient. Drug exposure of mesenchymal HCC cells showed higher resistance to the targeted therapeutic agents sorafenib and erlotinib as compared to epithelial HCC cells, which were slightly more resistant to cytostatic drugs. Most remarkably, combined treatment with doxorubicin and sorafenib caused increased susceptibility of both HCC cell types resulting in enhanced drug efficacy. Taken together, this novel model of human HCC allows to monitor the differential effect of liver cancer progression on drug efficacy in pre-clinical studies.
A human model of epithelial to mesenchymal transition to monitor drug efficacy in hepatocellular carcinoma progression.
Cell line
View Samples