T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chromosomal abnormalities, some occurring in a mutually exclusive manner possibly delineating specific T-ALL subgroups. One subgroup, including MLL-rearranged, CALM-AF10 or inv(7)(p15q34) cases, is characterized by elevated expression of HOXA genes. Using a gene expression based clustering analysis of 67 T-ALL cases with recurrent molecular genetic abnormalities and 25 samples lacking apparent aberrations, we identified 5 new cases with elevated HOXA levels. Using array-CGH, a cryptic and recurrent deletion, del(9)(q34.11q34.13), was exclusively identified in 3 of these 5 cases. This deletion results in a conserved SET-NUP214 fusion product, that was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter regions of specific HOXA genes, where it may interact with CRM1 and DOT1L leading to the transcriptional activation of HOXA genes. Targeted inhibition of SET-NUP214 by siRNA abolished expression of HOXA genes, inhibited proliferation and induced differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 may contribute to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest.
The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia.
No sample metadata fields
View SamplesTo understand how atypical bHLH, INCREASED LEAF INCLINATION1 (ILI1)-BINDING bHLH-1 (IBH1) (At2g43060), and close homologue, IBH1-like1 (IBL1) (At4g30410), interact to regulate cell elongation, genome-wide RNA-Seq expression analyses of IBH1 and IBL1 gain-(IBH1OE, IBL1OE) and loss-of-function (ibh1 (SALK 049177), ibl1(SALK 119457)) mutants were conducted. Overall design: For loss-of-function mutant, homozygous ibh1(SALK 049177) and ibl1(SALK 119457) were compared to wild type (Col). For gain-of-function mutant, homozygous 35Spro:IBH1-GFP and 35Spro:IBL1-GFP were compared to wild type (Col). Total RNAs were extactced from seedling of each genotypes. For each genotype two biological replicates were sequenced.
Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesThe effect of CTCFL mutation on the transcriptional program in testes
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesCTCFL binding to DNA and the effect of CTCFL expression in ES cells
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A NOTCH3 transcriptional module induces cell motility in neuroblastoma.
Specimen part, Cell line
View SamplesMigratory embryonal neuroblasts give rise to several tissues, including the sympathetic nervous system (SNS). Neuroblastomas are paediatric tumours of the peripheral SNS with a highly variable prognosis. We observed that high NOTCH3 expression in neuroblastomas correlated with a poor prognosis. Expression of a NOTCH3 transgene in neuroblastoma cells induced many motility genes and conferred a highly motile phenotype. Expression of these motility genes strongly correlated with NOTCH3 expression in neuroblastomas and many other tumours, suggesting a general role for NOTCH3 in regulation of these genes. Silencing of NOTCH3 or genes of the Notch-processing -secretase complex induced apoptosis in all neuroblastoma cell lines tested. These data suggest that NOTCH3 is a key-regulator of motility, and indispensable for survival of neuroblastoma cells.
A NOTCH3 transcriptional module induces cell motility in neuroblastoma.
Cell line
View SamplesMice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. (
Transcription factor Sp3 knockout mice display serious cardiac malformations.
No sample metadata fields
View SamplesSome commensal bacteria stimulate the immune system but do not present specific antigenicity. Such adjuvant effects have been reported for the bacterial species Lactobacillus plantarum. To study in vivo human responses to L. plantarum, a randomised double-blind placebo-controlled cross-over study was performed. Healthy adults were provided preparations of living and heat-killed L. plantarum bacteria, biopsies were taken from the intestinal mucosa and altered transcriptional profiles were analysed. Transcriptional profiles of human epithelia displayed striking differences upon exposure to living L. plantarum bacteria harvested at different growth phases. Modulation of NF-B-dependent pathways was central among the major altered cellular responses. This unique in vivo study shows which cellular pathways are associated with the induction of immune tolerance in mucosal tissues towards common adjuvanticity possessing lactobacilli.
Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance.
No sample metadata fields
View SamplesHuman aging is associated with loss of function and regenerative capacity. Human bone marrow derived mesenchymal stromal cells (hMSCs) are involved in tissue regeneration, evidenced by their capacity to differentiate into several lineages and therefore are considered the gold standard for cell-based regeneration therapy. Tissue maintenance and regeneration is dependent on stem cells and declines with age and aging is thought to influence therapeutic efficacy, therefore, more insight in the process of aging of hMSCs is of high interest. We, therefore, hypothesized that hMSCs might reflect signs of aging. In order to find markers for donor age, early passage hMSCs were isolated from bone marrow of 61 donors, with ages varying from 17-84, and clinical parameters, in vitro characteristics and microarray analysis were assessed. Although clinical parameters and in vitro performance did not yield reliable markers for aging since large donor variations were present, genome-wide microarray analysis resulted in a considerable list of genes correlating with human age. By comparing the transcriptional profile of aging in human with the one from rat, we discovered follistatin as a common marker for aging in both species. The gene signature presented here could be a useful tool for drug testing to rejuvenate hMSCs or for the selection of more potent, hMSCs for cell-based therapy.
A mesenchymal stromal cell gene signature for donor age.
Sex, Age
View Samples