We identified a tumor signature of 5 genes that aggregates the 156 tumor and normal samples into the expected groups. We also identified a histology signature of 75 genes, which classifies the samples in the major histological subtypes of NSCLC. A prognostic signature of 17 genes showed the best association with post-surgery survival time. The performance of the signatures was validated using a patient cohort of similar size
Gene expression-based classification of non-small cell lung carcinomas and survival prediction.
Sex, Specimen part
View SamplesTitle: Transcriptome analysis of human endometrial tissues from healthy post-menoupausal women reflecting the endometrial response to 3-weeks treatment with tibolone, E2 and E2+MPA.
Molecular analysis of human endometrium: short-term tibolone signaling differs significantly from estrogen and estrogen + progestagen signaling.
No sample metadata fields
View SamplesAcetate, propionate and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relatively little attention. To investigate this aspect, we infused conscious mice with physiological quantities of stable isotopes [1-13C]acetate, [2-13C]propionate or [2,4-13C2]butyrate directly into the cecum, which is the natural production site in mice, and analyzed their interconversion by the microbiota as well as their metabolism by the host. Cecal interconversion - pointing to microbial cross-feeding - was high between acetate and butyrate, low between butyrate and propionate and almost absent between acetate and propionate. As much as 62% of infused propionate was used in whole-body glucose production, in line with its role as gluconeogenic substrate. Conversely, glucose synthesis from propionate accounted for 69% of total glucose production. The synthesis of palmitate and cholesterol in the liver was high from cecal acetate (2.8% and 0.7%, respectively) and butyrate (2.7% and 0.9%, respectively) as substrates, but low or absent from propionate (0.6% and 0.0%, respectively). Label incorporation due to chain elongation of stearate was approximately 8-fold higher than de novo synthesis of stearate. Microarray data suggested that SCFAs exert only a mild regulatory effect on the expression of genes involved in hepatic metabolic pathways during the 6h infusion period. Altogether, gut-derived acetate, propionate and butyrate play important roles as substrates for glucose, cholesterol and lipid metabolism.
Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids.
Sex, Specimen part, Treatment
View SamplesWe undertook an inter-laboratory effort to generate high-quality quantitative data for a very large number of cellular components in yeast using transcriptome and metabolome analysis. We ensured the high-quality of the experimental data by evaluating a wide range of sampling and measurement techniques. The data were generated for two different yeast strains, each growing under two different growth conditions and based on integrated analysis of the high-throughput data we hypothesize that differences in growth rates and yields on glucose between the two strains are due to differences in protein metabolism.
Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains.
No sample metadata fields
View SamplesWe report ileal gene expression at diagnosis in a cohort of 210 treatment-naïve patients of pediatric Crohn''s disease and 35 non-IBD controls from the RISK study. After three years of follow-up after diagnosis, 27 of the CD patients progressed to complicated disease (B2 and/or B3). We aim to test whether Transcriptional Risk Scores helps to distinguish between patient subgroups, improving the predictive power gained from Genetic Risk Scores. Overall design: Ileal biopsies were obtained during diagnostic colonoscopies of children and adolescents (<17 years) who presented with symptoms of IBD. Non-IBD control label corresponds to those with suspected IBD, but without inflammation and normal endoscopic findings. Biopsies were stored at -80 degrees.
Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn's disease.
No sample metadata fields
View SamplesObjective: Long non-coding RNAs (lncRNA) regulate gene transcription and diverse cellular functions. We previously defined a novel core inflammatory and metabolic ileal gene signature in treatment naïve pediatric Crohn Disease (CD), however, genome-wide characterization of lncRNA expression was lacking. We now extend our analyses to define a more comprehensive view that includes lncRNA. Design: Using RNAseq, we performed a systematic profiling of lncRNAs and protein-coding genes expression in 177 ileal biopsies. Co-expression analysis was used to identify functions and tissue-specific expression. RT-PCR was used to test lncRNAs regulation by IL-1ß in Caco-2 enterocytes model. Results: We characterize a widespread dysregulation of 459 lncRNA in the ileum of treatment naïve pediatric CD patients. Unsupervised and supervised classifications using the 459 lncRNA showed comparable patients' grouping as the 2160 dysregulated protein-coding genes, linking lncRNA to CD pathogenesis. Co-expression and functional annotation enrichment analyses across several tissues and cell types showed that the up-regulated LINC01272 is associated with a myeloid pro-inflammatory signature while the down-regulated HNF4A-AS1 exhibits association with an epithelial metabolic signature. We further validated expression and regulation of prioritized lncRNA upon IL-1ß exposure in differentiated Caco-2 cells. Finally, we identified significant correlations between LINC01272 and HNF4A-AS1 expression and more severe mucosal injury. Conclusion: We define differentially expressed lncRNA in the ileum of treatment naive pediatric CD. We show lncRNA utility to correctly classify disease or healthy states and demonstrate their regulation in response to an inflammatory signal. These lncRNA, after mechanistic exploration, may serve as potential new targets for RNA-based interventions. Overall design: Using RNAseq, we performed a systematic profiling of lncRNAs and protein-coding genes expression in 21 days differentiated caco-2 cells
Long ncRNA Landscape in the Ileum of Treatment-Naive Early-Onset Crohn Disease.
Specimen part, Subject
View SamplesRNA was isolated from rectal biopsies from 190 pediatric patients undergoing diagnostic colonoscopy for inflammatory bowel diseases, including Crohn's disease and ulcerative colitis. Single-end, 75-bp sequencing was performed, and raw reads aligned to the human genome using Gencode v 24 as reference. We included 14085 protein-coding mRNA genes in downstream analyses, where cutoffs of fold change>1.5 and FDR<0.05 were considered significant. Overall design: RNA-sequencing of rectal biopsies obtained from pediatric IBD and control patients.
Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response.
Specimen part, Disease, Subject
View SamplesDevelopment of specialized cell types and structures in the vertebrate heart is regulated by spatially-restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development and function we used tomo-seq, combining high-throughput RNA sequencing with tissue sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development and function. Using our transcriptome map, we identified spatially restricted Wnt/ß-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/ß-catenin signaling at a specific developmental stage in the myocardium controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially-restricted molecular pathways critical for specific cardiac functions. Overall design: To generate spatially-resolved RNA-seq data for the developing zebrafish hearts (2 days post fertilization), we cryosectioned 3 hearts, extracted RNA from the individual sections, amplified and barcoded mRNA using the CEL-seq protocol (Hashimshony et al., Cell Reports, 2012) with a few modifications. Libraries were sequenced on Illumina NextSeq using 75bp paired end sequencing. Sample Heart #1 is the primary sample. Heart #2 and #3 are biological replicates used for comparison.
Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate.
Specimen part, Subject
View SamplesCardiomyopathies-associated metabolic pathologies (e.g. T2D and insulin resistance) are a leading cause of mortality. It is known that the association between the pathologies works in both directions, where heart failure can lead to metabolic derangements such as insulin resistance. This intricate crosstalk exemplifies the importance of a fine coordination between one of the most energy demanding organs and an equilibrated carbohydrate metabolism. In this light, to assist in the understanding of the role of insulin regulated glucose transporters and the development of cardiomyopathies, we set out to study GLUT12. GLUT12 is a novel insulin regulated GLUT expressed in the main insulin sensitive tissues such as cardiac and skeletal muscle and adipose tissue. This study investigates the role of GLUT12 in heart failure and diabetes by developing a model for glut12 deficiency in zebrafish. Overall design: 6 samples in total were analyzed. 3 replicates from control samples (injected with contol MO) and 3 replicates from glut12 morphant samples (injected with glut12 splice MO). In each sample 10 embryos were pooled.
GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish.
No sample metadata fields
View SamplesWe used a mouse strain in which one Tbx3 gene was replaced with the yellow fluorescent protein variant Venus. Luminal cells had either very high Tbx3 promoter activity or not at all.
Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.
No sample metadata fields
View Samples