To quantitative analysis of transcriptome changes caused by lnc-OPC knockdown during OPC differentiation from NSC, lentivirus-based short hairpin RNAs were used to knockdown the lnc-OPC expression in a neural stem cell culture . Subsequently, puromycin-selected NSCs were differentiated to OPC in culture for three days.RNA-Seq was performed on the polyadenylated fraction of RNA isolated from cell samples. DEseq was used for differential gene expression analysis caused by lnc-OPC knockdown. GO functional term enrichment analysis of differential gene expression caused by lnc-OPC knockdown, revealed significant enrichment of 'oligodendrocyte development', 'oligodendrocyte differentiation', 'glia cell development', and 'axon ensheathment' terms that are associated with oligodendrogenesis. Overall design: mRNA profiles of differentiiated NSC samples after lnc-OPC knockdown by RNA-sequencing.
Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination.
Specimen part, Cell line, Subject
View SamplesTo better understand the transcriptome of mouse neural stem cells (including known genes and novel long non coding RNA genes), RNA-Seq was performed on the polyadenylated fraction of RNA isolated from cell samples. Read mapping and transcriptome construction were done by using optimized pipeline which integrate Tophat followed by Cufflinks. Overall design: mRNA profiles of mouse neural stem cells were generated by RNA-sequencing.
Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination.
Specimen part, Cell line, Subject
View SamplesMultiple Myeloma (MM) remains incurable, and new drugs with novel mechanisms of action are still needed. In this report, we have analyzed the action of Zalypsis, an alkaloid analogous to certain natural marine compounds, in MM. Zalypsis turned out to be the most potent antimyeloma agent we have tested so far, with IC50s from picomolar to low nanomolar ranges. It also showed remarkable ex vivo potency in plasma cells from patients and in MM cells in vivo xenografted in mice. Besides the induction of apoptosis and cell cycle arrest, Zalypsis provoked DNA double-strand-breaks (DSB), evidenced by an increase in phospho-Histone-H2AX and phospho-CHK2, followed by a striking overexpression of p53 in p53-wild type cell lines. In addition, in those cell lines in which p53 was mutated, Zalypsis also provoked DSB and induced cell death, although higher concentrations were required. Immunohistochemical studies in tumours also demonstrated Histone-H2AX phosphorylation and p53 overexpression. Gene expression profile studies were concordant with these results, revealing an important deregulation of genes involved in DNA-damage response. The potent in vitro and in vivo antimyeloma activity of Zalypsis uncovers the high sensitivity of tumour plasma cells to DSB, and strongly supports the use of this compound in MM patients.
Zalypsis: a novel marine-derived compound with potent antimyeloma activity that reveals high sensitivity of malignant plasma cells to DNA double-strand breaks.
No sample metadata fields
View SamplesStudy on differential gene expression and splicing between wildtype and clock mutants. This study is part of a comparative analysis of the role of Protein Methyltransferase 5 in the regulation of transcriptional and post-transcriptional processes simultaneously in Arabidopsis and Drosophila.
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Specimen part
View SamplesEndocycle is an alternative cell cycle during which the DNA is replicated in the absence of cytokinesis, resulting in cellular endopolyploidy. The endocycle is frequenctly observed in plant species that grow under extreme conditions. Thus, endopolyploidy has been postulated to be a mechanism facilitating adaptive growth.
A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation.
Specimen part
View SamplesSomatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates, but is especially prominent in higher plants where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues and a strong dependence on stress signals. Cellular and transcriptomic analysis revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and change in expression of cell wall modifying genes, correlated with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability, and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments. Overall design: Two biological replicates of Col-0 were compared with three biological replicates of smr1
A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation.
Specimen part, Subject
View SamplesDiffuse large B-cell lymphoma (DLBCL) has striking clinical and molecular variability. Although a more precise identification of the multiple determinants of this variability is still under investigation, there is a consensus that high-clinical-risk DLBCL cases require a risk-adapted therapy, since intensification of chemotherapy with autologous stem-cell transplantation (ASCT) has been shown to improve the prognosis for high-risk patients in randomised clinical trials.
Identification of biological markers of sensitivity to high-clinical-risk-adapted therapy for patients with diffuse large B-cell lymphoma.
No sample metadata fields
View SamplesEight healthy human subjects were enrolled in a 6-day simulated shift work protocol. Blood samples were collected during the two 24-hour measurement periods. Blood samples were collected every 4 hours during both measurement periods. Subjects entered the lab on Day 1. At the start of Day 2, the first 24-hour measurement period was started. Subjects slept according to their habitual sleep/wake schedule, followed by a 16-hour constant posture procedure. On days 3-6, the sleep period was delayed by 10 hours. Following the third night on this schedule, subjects underwent another 24-hour measurement period. During both measurement periods, 7 blood samples were collected and PBMCs were isolated. mRNA was extracted, labelled, and hybridized to microarrays.
Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.
Subject
View SamplesOld C57BL/6 mice cannot mount an effective innate immune response
Aged mice are unable to mount an effective myeloid response to sepsis.
Specimen part, Treatment, Time
View SamplesWe quantified differential gene (mRNA) expression in human coronary artery cells treated with native HDL, reconstituted HDL, lipid-free apolipoprotein A-I, small unilamellar vesicles, or PBS control.
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.
Specimen part
View Samples