The goal was to identify the differently expressed genes between laryngeal tumor and nonmalignant surrounding mucosa
Transcriptome Analysis Identifies ALCAM Overexpression as a Prognosis Biomarker in Laryngeal Squamous Cell Carcinoma.
Specimen part, Disease, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of artifactual microarray probe signals constantly present in multiple sample types.
Specimen part
View SamplesThe correlation of the RNA profiles obtained by microarray analysis was compared with that obtained from RNA-Seq by using reduced complexity sperm datasets. This resolved as a series of discordant probes. The extent of discordancy among other datasets was then determined.
Identification of artifactual microarray probe signals constantly present in multiple sample types.
Specimen part
View SamplesThe correlation of the RNA profiles obtained by microarray analysis was compared with that obtained from RNA-Seq by using reduced complexity sperm datasets. This resolved as a series of discordant probes. The extent of discordancy among other datasets was then determined. Overall design: A correlative study between probe’s signal intensity from Illumina bead arrays with its transcript level detected by next generation sequencing technique was performed. RNAs from sperm and testis samples were applied
Identification of artifactual microarray probe signals constantly present in multiple sample types.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses.
Specimen part, Treatment, Time
View SamplesPlants can perceive the presence of pathogens at the cell surface and plant damage-derived molecules via recognition of conserved microbial molecules, named pathogen- or microbe-associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs). Well-studied examples of PAMPs are chito-oligomers, breakdown products of fungal cell walls and insect exoskeletons. Pectin-derived oligogalacturonides (OGs) are well-characterized DAMPs. Both PAMPs nd DAMPs are capable of activating plant immunity, generating changes in gene expression that lead to increased production of defense compounds and proteins; thus, equipping the plant cell to defend itself.
Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses.
Specimen part, Treatment, Time
View SamplesPlants can perceive the presence of pathogens at the cell surface and plant damage-derived molecules via recognition of conserved microbial molecules, named pathogen- or microbe-associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs). Well-studied examples of PAMPs are chito-oligomers, breakdown products of fungal cell walls and insect exoskeletons. Pectin-derived oligogalacturonides (OGs) are well-characterized DAMPs. Both PAMPs nd DAMPs are capable of activating plant immunity, generating changes in gene expression that lead to increased production of defense compounds and proteins; thus, equipping the plant cell to defend itself.
Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View SamplesDespite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View SamplesDespite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View Samples