Circadian and metabolic processes are codependent. This experiment was designed to understand how a high fat diet affects circadian gene expression in the liver. Circadian gene expression in the liver is necessary for energy balance.
Reprogramming of the circadian clock by nutritional challenge.
Specimen part
View SamplesThe circadian gene expression in peripheral tissue displays rhythmicity which is driven by the circadian clock and feeding-fasting cycle in mammals. In this study, circadian transcriptome was performed to investigate how fasting influences circadian gene regulation. Overall design: 8-week-old, male C57BL/6 mice were subjected to 24-hr fasting (FAST) or to ad libitum normal chow feeding (FED) under 12hr light/ 12hr dark schedule. Liver and gastrocnemius muscle were harvested every 4 hours over the circadian cycle at ZT0, 4, 8, 12, 16, 20 (n=3 per time point per group). Total RNA was extracted from liver and gastrocnemius muscle, and used for RNA-seq.
Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle.
Age, Cell line, Subject
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the different inducible cell lines
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the inducible not-tagged cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of TFEB overexpression on the hela cells transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the hela TFEB stable clones
TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy.
Cell line
View SamplesIn order to identify the effects of the knock-down of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the knock-down cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesComparison of the hepatic circadian transcriptomes reveals that SIRT6 and SIRT1 separately control transcriptional specificity, and therefore, define distinctly partitioned classes of circadian genes.
Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism.
Specimen part
View SamplesThe HSA21-mES Cell Bank includes, in triplicate clones, thirty-two murine orthologs of HSA21 genes, which can be overexpressed in an inducible manner using the Tet-off system integrated in the Rosa26 locus.
A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Specimen part
View Samples