Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88x10-2 5.02x10-9). This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 involved in DNA repair are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show that cellular defences against DNA damage may take part in the pathogenesis of NSCL/P, in accordance with the hypothesis of aetiological overlap between this malformation and cancer. These results provide more information regarding the aetiology of NSCL/P and have the potential tocan potentially assist incontribute to the development of future preventive strategies.
Susceptibility to DNA damage as a molecular mechanism for non-syndromic cleft lip and palate.
Sex, Specimen part
View SamplesActinic keratosis is a common skin disease that may progress to invasive squamous cell carcinoma. Ingenol mebutate has demonstrated efficacy in field treatment of actinic keratosis. However, molecular mechanisms on ingenol mebutate response are not yet fully understood.
Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel.
Specimen part, Disease, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesAlthough most cutaneous squamous cell carcinomas (cSCC) develop from actinic keratoses (AK), the key events for this evolution remain unclear. We have combined the results of different genomic and expression array platforms on matched samples of sun-exposed skin, AK and cSCC from ten immunocompetent patients, with the objective of better understanding the mechanisms involved in this progression. Gene expression analysis and copy number alterations were assessed using GeneChip Human Gene 2.0 ST Array (Affymetrix) and CytoScan HD Cytogenetics Solution (Affymetrix) platforms, respectively. Integration of genome and transcriptome results was evaluated using the DR-Integrator tool. Additional studies (qPCR, immunohistochemistry and Western blot) were performed for selected genes. Twenty-two genes showed a progressive expression spectrum from clinically normal sun-exposed skin samples to cSCC. FOSL1 and BNC1 encode transcription factors whose expression was increased in cSCC in the expression array and the qPCR. By immunohistochemistry, FOSL1 showed an intense staining at the invasive front of cSCC samples and BNC1 expression varied from a nuclear location (sun-exposed skin) to a cytoplasmic location (cSCC). Western blot analyses confirmed the enhancement of FOSL1 and BNC1 expression. Additionally, the smallest overlapping regions of genomic imbalance (SORIs) involving at least 3 of the samples of each group (sun-exposed skin, AK or cSCC) were selected. One of the SORIs was a deletion in the p24.1 band of chromosome 3, shared by 7 of the cSCC. A strong correlation in the integration analysis was found for NEK10, a gene contained in the previously mentioned SORI. Loss of NEK10 expression in cSCC was confirmed by immunohistochemistry and western blot analyses. In conclusion, our findings suggest that FOSL1 may play a role in promoting the cSCC invasion ability. We have also identified two additional genes, NEK10 and BNC1, which could also act as tumor drivers.
Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesThe simultaneous genotyping of tens of thousands of SNP using SNP microarrays is a very important tool that is revolutionizing genetics and molecular biology. In this work, we present a new application of this technique by using it to assess chromatin immunoprecipitation (CHIP) as a means to assess the multiple genomic locations bound by a protein complex recognized by an antibody. We illustrate the use of this technique with an analysis of the change in histone H4 acetylation, a marker of open chromatin and transcriptionally active genomic regions, which occur during the differentiation of human myoblasts into myotubes. Our results are validated by the observation of a significant correlation between the histone modifications detected and the expression of the nearby genes, as measured by DNA microarrays.
ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation.
No sample metadata fields
View SamplesGene expression was determined for both myotubes and myoblasts using Affymetrix HG-U133 A/B arrays.
ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation.
No sample metadata fields
View SamplesOur laboratory wanted to define the transcription profile of aged skeletal muscle. For this reason, we performed a triplicate microarray study on young (3 weeks) and aged (24 months) gatrocnemius muscle from wild-type C57B16 Mice
Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing.
Sex
View SamplesThe pigmented portion of ciliary epithelium in the adult mammalian eye harbors mitotically quiescent retinal sphere cells, which are capable of self-renewal and differentiating into retinal neurons when assayed in vitro; however, very little is known about the molecular mechanism controlling the proliferation and differentiation of these adult retinal stem cells or their molecular resemblance to mutipotent stem/progenitor cells during early eye development. This experiment studies the gene expression of first passage and primary human and mouse retinal sphere cells.
Recent developments in StemBase: a tool to study gene expression in human and murine stem cells.
Sex
View SamplesCockayne syndrome (CS) is an autossomal human disorder characterized by premature aging along with other symptoms. At the molecular level, CS is characterized by a deficiency in the Transcription-couple DNA repair pathway caused by a mutation mainly in ERCC6 gene and the absence of its functional protein. It has been shown that the presence of DNA damage and the lack of some functional proteins related to DNA repair constitute a barrier for somatic cell reprogramming. Recently, it was demonstrated that one protein involved in Genome Global Repair controls the expression of an important pluripotent gene, highligting its importance for cellular reprogramming.
Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome.
Specimen part, Disease, Cell line
View SamplesAn 11-point time course study comparing V6.5 embryonic stem cells versus embryoid bodies. Time course 0 hours, 6 hours, 12 hours, 18 hours, 24 hours, 36 hours, 48 hours, 4 days, 7 days, 9 days, and 14 days.
Gene function in early mouse embryonic stem cell differentiation.
Sex
View Samples