Throughout postnatal life in mammals, neural stem cells (NSCs) are located in the subventricular zone (SVZ) of the lateral ventricles. The greatest diversity of neuronal and glial lineages they generate occurs during early postnatal life in a region-specific manner. In order to evaluate potential heterogeneity in the NSC pool, we microdissected the dorsal and lateral SVZ at different postnatal ages and isolated NSCs and their immediate progeny based on their expression of Hes5-EGFP/Prominin1 and Ascl1-EGFP, respectively. Whole genome comparative transcriptome analysis revealed transcriptional regulators as major hallmarks that sustain postnatal SVZ regionalization. Manipulation of single genes encoding for locally enriched transcription factors influenced NSC specification indicating that the fate of regionalized postnatal SVZ NSCs can be readily modified . These findings reveal functional heterogeneity of NSCs in the postnatal SVZ and provide targets to recruit region-specific lineages in regenerative contexts.
Transcriptional Hallmarks of Heterogeneous Neural Stem Cell Niches of the Subventricular Zone.
Specimen part
View SamplesNotch signaling plays both oncogenic and tumor suppressor roles, depending on cell type. In contrast to T cell acute lymphoblastic leukemia (T-ALL), where Notch activation promotes leukemogenesis, induction of Notch signaling in B-ALL leads to growth arrest and apoptosis. The Notch target Hairy/Enhancer of Split1 (HES1) is sufficient to reproduce this tumor suppressor phenotype in B-ALL, however the mechanism is not yet known. Here we report that HES1 regulates pro-apoptotic signals via the novel interacting protein Poly ADP-Ribose Polymerase1 (PARP1) in a cell type-specific manner. The interaction of HES1 with PARP1 inhibits HES1 function, induces PARP1 activation and results in PARP1 cleavage in B-ALL. HES1-induced PARP1 activation leads to self-ADP ribosylation of PARP1, consumption of NAD+, diminished ATP levels, and translocation of the Apoptosis Inducing Factor (AIF) from mitochondria to the nucleus, resulting in apoptosis in B-ALL, but not T-ALL. Importantly, induction of Notch signaling via the Notch agonist peptide DSL can reproduce these events and leads to BALL apoptosis. The novel interaction of HES1 and PARP1 in B-ALL modulates the function of the HES1 transcriptional complex and signals through PARP1 to induce apoptosis. This mechanism reveals a cell type-specific pro-apoptotic pathway which may lead to Notch agonist-based cancer therapeutics.
Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression.
Specimen part
View SamplesWe performed gene expression pofiling of Zeb2cKO and control sciatic nerves and identified significantly changed genes ZEB2 is also known as SIP1 Overall design: 4 RNA-Seq samples from P7 sciatic nerves of Ctrl and Zeb2 cKO mice (duplicatess, Ctrl and cKO)
Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination.
Specimen part, Subject
View SamplesAnalysis of expression profiles of human pDC cell line (CAL1) compared to an immature T cell line (MOLT4)
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesAnalysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in EMT-dependent tumor metastasis. While the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is upregulated by activated T cells, specifically in the KLRG1hi effector CD8+ T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8+ T cells following primary and secondary infection with a severe impairment in the generation of the KLRG1hi effector-memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress CD127 and IL-2 in CD8+ T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box-sites in the ZEB2 gene and that T-bet and ZEB2 regulate similar gene-expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Taken together, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8+ T cells.
Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome.
Sex
View SamplesThe second trimester fetal transcriptome can be assessed based on cell-free RNA found within the amniotic fluid supernatant. The objective of this study was to compare the suitability of two technologies for profiling the human fetal transcriptome: RNA-Seq and expression microarray. Comparisons were based on total numbers of gene detected, rank-order gene expression, and functional genomic analysis.
RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers.
Sex, Specimen part
View SamplesOral cavity squamous cell carcinoma (OSCC) is a disease with extensive morbidity and mortality and few useful molecular targets.
Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers.
Sex, Specimen part
View Samples