Despite the prevalence and recognition of its detrimental impact, clinical complications of sepsis remain a major challenge. Here, we investigated the effects of myeloid ferritin heavy chain (FtH) in regulating the pathogenic sequelae of sepsis. We demonstrate that deletion of myeloid FtH leads to tolerance towards sepsis as evidenced by reduced serum cytokine levels, multi-organ dysfunction and subsequent mortality. We identified that such tolerance is predominantly mediated by the compensatory increase in circulating ferritin (ferritin light chain; FtL) in the absence of myeloid FtH. Our in vitro and in vivo studies indicate that prior exposure to ferritin provides significant tolerance to the septic process by restraining an otherwise dysregulated response to infection. These findings are mediated by an inhibitory action of ferritin on NF-?B activation and its downstream effects. Taken together, our findings suggest an essential immunomodulatory function for circulating ferritin and enhances our understanding of this acute phase reactant. Overall design: Total RNA were isolated from blood leukocytes of wild type FtH mice and Myeloid deficient FtH mice following sham and CLP surgery. Three biological replicates were considered for each genotype and surgery type.
Ferritin Light Chain Confers Protection Against Sepsis-Induced Inflammation and Organ Injury.
Cell line, Subject
View SamplesGoal was to identify yeast genes whose expression changed as a function of the shift from growth in bulk culture to growth in an air-liquid interfacial biofilm.
Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.
Specimen part
View SamplesComparison of gene expression profiles from C. elegans wildtype strain (N2) treated with L4440 and T25B9.1 RNAi for 5 days after L4 larvae stage. Jena Centre for Systems Biology of Ageing - JenAge (ww.jenage.de) Overall design: 6 samples in 2 groups: N2, L4440 5 days (3 Samples); N2, T25B9.1 5 days (3 Samples)
Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis.
Sex, Age, Specimen part, Cell line, Subject
View SamplesBackground: Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors, and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. The RNA-seq data comprises 2 biological replicates for worms exposed to 100nM Arsenite 48h after L4 and 2 biological replicates of the same age as controls Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 4 samples: 2 mRNA profiles of C.elegans 48h after L4 exposed to Arsenite; 2 mRNA profiles of C.elegans 48h after L4 as controls (H20). The N2 wild type (var. Bristol) strain was used.
Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension.
Specimen part, Treatment, Subject
View SamplesThe Caenorhabditis elegans somatic gonad was the first organ to have its cell lineage determined, and the gonadal lineages of the two sexes differ greatly in their pattern of cell divisions, cell migration and cell types. Despite much study, the genetic pathways that direct early gonadal development and establish its sexual dimorphism remain largely unknown, with just a handful of regulatory genes identified from genetic screens. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in Z1/Z4 or Z1/Z4 daughter cells in each sex at the onset of somatic gonadal sexual differentiation. For comparison, transcripts were identified in whole animals at both time points. Pairwise comparisons of samples identified several hundred gonad-enriched transcripts, including most known Z1/Z4-enriched mRNAs, and reporter analysis confirmed the effectiveness of this approach. Prior to the Z1/Z4 division few sex-biased Z1/Z4 transcripts were detectable, but less than six hours later, we identified more than 250 sex-biased transcripts in the Z1/Z4 daughters, of which about a third were enriched in the somatic gonad cells compared to cells from whole animals. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in these cells around the time of the first Z1/Z4 division. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in Z1/Z4 or their daughters. Our data suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. Overall design: 20 total sample: two time points, two sexes, and gonadal cells or whole animals. The earlier time point was collected in triplicate and was harvested 9.5 hours after starved, hatched L1s were fed. The later time point was collected in duplicate and was harvested 15 hour after starved, hatched L1 were fed. Replicates of either dissociated whole animals or gonadal cells (Z1/Z4 or Z1/Z4 daughter) from both male and hermaphrodites were harvested for each time point.
Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts.
Sex, Specimen part, Subject, Time
View SamplesEven after decades of living in the same laboratory environment two Drosophila melanogaster strains originating from North America (Canton-S) and Central Russia (D18) demonstrate a few differentially expressed genes some of which may be important for local adaptation (e.g. genes responsible for insecticide resistance). Genes with different level of expression between Canton-S and D18 strains belong to important metabolic pathways, for instance energy metabolism, carbohydrate metabolic process, locomotion, body temperature rhythm regulation and tracheal network architecture.
Transcriptome analysis of <i>Drosophila melanogaster</i> laboratory strains of different geographical origin after long-term laboratory maintenance.
No sample metadata fields
View SamplesSteer liver transcriptome
Differential expression of genes related to gain and intake in the liver of beef cattle.
Sex, Specimen part
View SamplesWorms were treated with bcat-1 RNAi Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 6 samples: 3 replicates for bcat-1 RNAi treatment; 3 replicates for controls
Branched-chain amino acid catabolism is a conserved regulator of physiological ageing.
Cell line, Subject
View SamplesWe use gene expression data to provide a three-faceted analysis on the links between molecular subclasses of glioblastima, epithelial-to mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-folded: First, we used a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrated that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between the genes up-regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provided evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we studied the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrated that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM demonstrates similarity with the signatures of both EMT and CD133, it also demonstrates some differences with each of these signatures that is partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together this data sheds light on role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme.
Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein.
Specimen part
View SamplesThe identification of a marker that is expressed in the conjunctival epithelium but not in the corneal epithelium has been a growing need. A more specific marker of limbal and conjunctival epithelia would be necessary to detect non-corneal epithelial cells on the corneal surface. To search for conjunctival specific marker(s), we first performed preferential gene profiling in the conjunctiva in direct comparison to that in the cornea using microarray technique.
Keratin 13 is a more specific marker of conjunctival epithelium than keratin 19.
Specimen part
View Samples