Spleen and lymph node dendritic cells have a differential capacity do induce and retain iTreg cells. Therefore we performed a comparative analysis of the dendritic cells derived from these two compartments to identify the responsible genes
Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells.
Specimen part
View SamplesGene expression analysis identified a CRC related signature of differentially expressed genes discriminating patients Responder and Non Responder to radiochemotherapy
A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesHIF-1 plays a crucial role in sustaining glioblastoma (GBM) cell growth and the maintenance of their undifferentiated phenotype. However, HIF-1 has been suggested to interplay with Wnt signaling components, thus activating a neuronal differentiation process in both GBM and normal brain. Here, we show that a -catenin/TCF1/HIF-1 complex directly controls the transcription of neuronal differentiation genes in hypoxia. Conversely, at higher oxygen levels, the increased expression of TCF4 exerts a transcriptional inhibitory function on the same genomic regions, thus counteracting differentiation. Moreover, we demonstrate the existence of a positive correlation between HIF-1, TCF1 and neuronal phenotype in GBM tumors, accompanied by the over-expression of several Wnt signaling components, finally impacting on patient prognosis. In conclusion, we unveil a mechanism by which TCF1 and HIF-1 induce a reminiscent neuronal differentiation of hypoxic GBM cells, which is hampered, in normoxia, by high levels of TCF4, thus de facto sustaining cell aggressiveness.
HIF-1α/Wnt signaling-dependent control of gene transcription regulates neuronal differentiation of glioblastoma stem cells.
Specimen part
View SamplesGlobal transcriptome patterns were determined in XVE-14 and wild-type seedlings induced for 45 min b-estradiol in order to identify the genes early regulated by EBE transcription factor.
EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation.
Specimen part
View SamplesInterleukin-2 (IL-2) is one of the molecules produced by mouse dendritic cells (DCs) after stimulation by Toll like receptor (TLR) agonists. By analogy with the events following T-cell receptor (TCR) engagement leading to IL-2 production we have observed that DC stimulation with lipopolysaccharide (LPS) induces Src-family kinase and phospholipase C (PLC)2 activation, influx of extracellular Ca2+ and calcineurin-dependent nuclear NFAT translocation. We have also observed that the initiation of this pathway is independent of TLR4 engagement, and dependent exclusively on CD14. To determine the role of NFAT in LPS activated dendritic cells we have performed microarray analysis in conditions allowing or inhibiting NFAT activation. We show here that LPS-induced NFAT activation via CD14 is necessary to cause death of terminally differentiated DCs, an event that is essential for maintaining self-tolerance and preventing autoimmunity. Consequently, blocking this pathway in vivo causes prolonged DC survival and an increase in T cell priming capability.
CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation.
Specimen part
View SamplesDendritic cells (DCs) are a special class of leukocytes able to activate both innate and adaptive immune responses. They interact with microbes through germline-encoded pattern-recognition receptors (PRRs), which recognize molecular patterns expressed by various microorganisms. Upon antigen binding, PRRs instruct DCs for the appropriate priming of natural killer cells, followed by specific T-cell responses. Once completed the effector phase, DCs reach the terminal differentiation stage and eventually die by apoptosis. We have observed that following lipopolysaccharide (LPS)-stimulation the initiation of the apoptotic pathway in DCs is due the activation of NFAT proteins. Indeed, LPS induces Src-family kinase and phospholipase C (PLC)2 activation, influx of extracellular Ca2+ and calcineurin-dependent nuclear NFAT translocation. The initiation of this pathway is independent of TLR4 engagement, and dependent exclusively on CD14. According with this observation CD14-deficient DCs do not die following LPS stimulation. Nevertheless, CD14-deficient DC death following LPS activation can be restored by co-stimulating DCs with LPS and thapsigargin. Thapsigargin empties the intracellular calcium stores by blocking calcium pumping into the sarcoplasmic and endoplasmic reticulum and thereby activates plasma membrane calcium channels. This, in turn, allows an influx of calcium into the cytosol and NFAT activation. To identify the NFAT controlled apoptosis genes in LPS activated DCs we have performed a kinetic microarray analysis (0, 48 and 60 h) in conditions allowing or inhibiting NFAT activation. Four genes have been selected: Nur77, Gadd45g, Ddit3/Gadd153/Chop-10 and Tia1.
CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation.
Specimen part
View SamplesMacrophages and dendritic cells (DCs) differently contribute to the generation of coordinated immune system responses against infectious agents. They interact with microbes through germline-encoded pattern-recognition receptors (PRRs), which recognize molecular patterns expressed by various microorganisms. Upon antigen binding, PRRs instruct DCs for the appropriate priming of natural killer cells, followed by specific T-cell responses. Once completed the effector phase, DCs reach the terminal differentiation stage and eventually die by apoptosis. By contrast, following antigen recognition, macrophages initiate first the inflammatory process and then switch to an anti-inflammatory phenotype for the restoration of tissue homeostasis. Following lipopolysaccharide (LPS)-stimulation the initiation of the apoptotic pathway in DCs is due the activation of NFAT proteins. DC stimulation with lipopolysaccharide (LPS) induces Src-family kinase and phospholipase C (PLC)2 activation, influx of extracellular Ca2+ and calcineurin-dependent nuclear NFAT translocation. The initiation of this pathway is independent of TLR4 engagement, and dependent exclusively on CD14. We asked whether macrophage survival after LPS encounter was due to their inability to activate the Ca2+ pathway.
CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation.
Specimen part
View SamplesThese data include RNA Seq data generated from wild type and Eed Ko intestinal crypts from AhCre and AhCreEedf/f mice. Overall design: Total RNA extracted from wild type and Eed Ko intestinal crypts.
PRC2 preserves intestinal progenitors and restricts secretory lineage commitment.
Cell line, Subject
View SamplesThe aim was to identify early target genes of the senescence-associated transcription factor: ORS1. For this purpose we used DEX-inducible system and studied the expression profile 5h after treatment using Affymetrix microarray.
ORS1, an H₂O₂-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana.
Specimen part
View Samples