We identified that knocking down Map4k4 in endothelial cells affected genes associated with the cell cycle, mitosis, and inflammatory genes.
Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function.
Specimen part
View SamplesSkeletal muscle atrophy is a consequence of many diseases, environmental insults, inactivity, age and injury. Atrophy is characterized by active degradation and removal of contractile proteins and a reduction in fiber size. Animal models have been extensively used to identify pathways leading to atrophic conditions. Here we have used genome-wide expression profiling analysis and quantitative PCR to identify the molecular changes that occur in two clinically relevant animal mouse models of muscle atrophy, hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7 and 14 days after insult. The total amount of muscle loss as measured by wet weight and muscle fiber size was equivalent between models, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tentomy resulted in the regulation of significantly more mRNA transcripts then casting. Analysis of the regulated genes and pathways suggest that the mechanism of atrophy is distinct between these models. The degradation following casting appears ubiquitin-proteasome-mediated while degradation following tenotomy appears lysosomal and matrix-metalloproteinase (MMP)-mediated. This data suggests that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat the atrophy seen under different conditions.
Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy.
Sex, Specimen part, Treatment, Time
View SamplesThe histone H3 lysine 9 (H3K9) methyltransferase Eset is an epigenetic regulator critical for the development of the inner cell mass (ICM). Although ICM-derived embryonic stem (ES) cells are normally unable to contribute to the trophectoderm (TE) in blastocysts, we find that depletion of Eset by shRNAs leads to differentiation with the formation of trophoblast-like cells and induction of trophoblast-associated gene expression. Using ChIP-seq analyses, we identified Eset target genes with Eset-dependent H3K9 trimethylation. We confirmed that genes that are preferentially expressed in the TE (Tcfap2a and Cdx2) are bound and repressed by Eset. Single cell PCR analysis shows that the expression of Cdx2 and Tcfap2a is also induced in Eset-depleted morula cells. Importantly, Eset-depleted cells can incorporate into the TE of a blastocyst and subsequently placental tissues. Co-immunoprecipitation and ChIP assays further demonstrates that Eset interacts with Oct4, which in turn recruits Eset to silence these trophoblast-associated genes. Our result suggests that Eset restricts the extraembryonic trophoblast lineage potential of pluripotent cells and links an epigenetic regulator to key cell fate decision through a pluripotency factor.
Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells.
Specimen part
View SamplesIn the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming.
Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb.
No sample metadata fields
View SamplesIn the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming.
Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb.
No sample metadata fields
View SamplesIn the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming.
Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb.
No sample metadata fields
View Samples