Staphylococcus aureus is a major human pathogen and resistant to numerous clinically used antibiotics. The first antibiotic developed for S. aureus infections was the nonribosomal petide secondary metabolite penicillin. We discovered cryptic nonribosomal peptide secondary metabolites, the aureusimines, made by S. aureus itself that are not antibiotics, but function as small molecule regulators of virulence factor expression. Using established rules and codes for nonribosomal peptide assembly we predicted these nonribosomal peptides, and used these predictions to identify them from S. aureus culture broths. Functional studies using global microarray and mouse bacteremia models established that the aureusimines control virulence factor expression and are necessary for productive infections. This is the first report of the aureusimines and has important implications for the treatment of drug resistant S. aureus. Targeting aureusimine synthesis may provide novel anti-infectives.
Staphylococcus aureus nonribosomal peptide secondary metabolites regulate virulence.
No sample metadata fields
View SamplesWe individually examined the ability of human ARGFX, DPRX, LEUTX, and TPRX1 to regulate gene expression by ectopically expressing these proteins in fibroblasts. Overall design: Each gene along with an empty control vector were transfected individually to drive ectopic expression in human dermal fibroblasts, in triplicate.
Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals.
Specimen part, Subject
View SamplesDifferential expression patterns of total mRNA in traditionally expanded T cells (vehicle) compared to T cells expanded under drugs (AKT inhibitor and CAL-101) Overall design: Comparison of transcriptional effects of two different drugs
PI3Kδ Inhibition Enhances the Antitumor Fitness of Adoptively Transferred CD8<sup>+</sup> T Cells.
Specimen part, Treatment, Subject
View SamplesCell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphologyical and global gene expression profile molecular features consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into induced multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelinmyelinating axons both in vitro and in vivo. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.
Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells.
Specimen part, Treatment
View SamplesThe goal was to capture the transcriptional activity due to over-expression of AKT, BAD, ERBB2, IGF1R, RAF1 and KRAS(G12V) genes .Overexpressions were validated using Western Blots. Illumina RNA-Seq technology was used to capture the downstream transcriptional activity. Reads were 101 base pairs long and single ended. An R open source package “Rsubread” was used to align and quantify the read using UCSC hg19 annotation. The integer-based gene counts were later normalized in TPM . Overall design: Profiles of gene expression, downstream of AKT, BAD, ERBB2, IGF1R, RAF1 and KRAS(G12V) over-expression, were generated in cells derived from breast and used to generate a gene-expression signatures.
Activity of distinct growth factor receptor network components in breast tumors uncovers two biologically relevant subtypes.
Specimen part, Subject
View SamplesHuman Immunodeficiency Virus (HIV) associated nephropathy (HIVAN) is characterized clinically by both nephrosis and by rapidly progressive kidney dysfunction. HIVAN is characterized histologically by both collapsing focal segmental glomerulosclerosis and prominent tubular damage. Neutrophil Gelatinase Associated Lipocalin (NGAL) is known to be rapidly expressed in distal segments of the nephron at the onset of different types of acute kidney injury, but few studies have examined NGAL in chronic kidney disease models. We found that urinary NGAL (uNGAL) was highly expressed by patients with biopsy proven HIVAN, whereas HIV+ patients without HIVAN demonstrated lower levels. uNGAL was also highly expressed in the TgFVB mouse model of HIVAN, which demonstrated NGAL gene expression in dilated, microcystic segments of the nephron. These data show that NGAL is markedly upregulated in the setting of HIVAN, and suggest that uNGAL levels may provide a non-invasive screening test to detect HIVAN related tubular disease.
Urinary NGAL marks cystic disease in HIV-associated nephropathy.
No sample metadata fields
View SamplesWe aimed to identify genes that are regulated at downstream of FGFR1/KLB receptor complex in brown adiposetissues of adult male mice on high fat diet by injecting anti-FGFR1/KLB agonisticantibody or human FGF21.
Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex.
Specimen part
View Samples