T cells in mucosal tissues fulfill a complex array of duties to ensure maintenance of barrier immunity. In oral mucosa tissue, we found that increased inflammation altered CD4 T cell subsets in a spatially-dependent manner, although it had a modest effect on the frequency of tissue-resident memory T cells (TRM) and the CD4 T cell transcriptome. In contrast, localization to the tissue profoundly altered the transcriptional profile, emphasizing the importance of studying healthy tissue to understand disease-specific changes. Our data revealed the existence of a TH17 cell population that is predominantly found in the tissue-resident, but not transient, CD4 T cell compartment in mucosal tissue. Overall design: This project contains bulk RNA-seq data from paired oral mucosa tissue and blood CD4 T cell subsets from 10 subjects and 10X genomics sequencing of CD4 T cell subsets from one individual
The human tissue-resident CCR5<sup>+</sup> T cell compartment maintains protective and functional properties during inflammation.
Specimen part, Subject
View SamplesTo study the molecular mediators of naturally rewarding effects of palatable food we used a model of palatable snacking (Ulrich-Lai et al., 2007) in which rats are given chronic, brief access to a limited amount of sucrose solution (30%). Single housed, male Long-Evans rats (250g) (n=12 per group) from Harlan Labs (Indianapolis, IN) received normal rat chow (Harlan Teklad) and water ad libitum for the duration of the experiment. After a one-week period of acclimation, rats were randomly assigned to drink treatment groups of either 30% sucrose solution or water. Rats received a 14-day regimen of twice daily (9:30 and 15:30) brief (maximum of 30 minutes) limited (up to 4 mL) access of their assigned drink solution. Drink solutions were delivered via a graduated sipper placed onto the cage top in addition to the existing water bottle and sippers were immediately removed when the animal had consumed 4mL or after the 30-minute access period, whichever occurred first. Drink intake, food intake, and body weight were monitored throughout the experiment to verify that the rats learned to drink sucrose, that they adjusted chow intake for calories consumed from sucrose (~10%), and that there was no effect on body weight gain as is normally seen with this model (Ulrich-Lai et al., 2007). Drink treatment terminated on day 14 and at 8:00 on the morning of day 15, the rats were sacrificed by rapid decapitation. BLA tissue was dissected, RNA extracted, and gene expression changes between water and sucrose groups were accessed by microarray.
Pleasurable behaviors reduce stress via brain reward pathways.
Sex, Specimen part, Treatment
View SamplesAfter ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these four cell types. Analysis of the RNA present in each bovine cell type using Affymetrix microarrays yielded new cell-specific genetic markers, functional insight into the behavior of each cell type via Gene Ontology Annotations and Ingenuity Pathway Analysis, and evidence of small and large luteal cell lineages using Principle Component Analysis. Enriched expression of select genes for each cell type was validated by qPCR. This expression analysis offers insight into the lineage and differentiation process that transforms somatic follicular cells into luteal cells.
Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions.
No sample metadata fields
View SamplesRenal recovery following injury relies on cellular regeneration. In the mouse kidney following injury, injured epithelial cells undergoes de-differentiate, proliferate and re-differentiate into functional cells, following a a tightly controlled genetic programme where specific sets of genes are up-regulated.
Histone deacetylase inhibitor enhances recovery after AKI.
Specimen part
View SamplesMicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Emerging evidence suggests the potential involvement of altered regulation of miRNA in the pathogenesis of cancers, and these genes are thought to function as both tumor suppressors and oncogenes. Using microRNA microarrays, we identify several miRNAs aberrantly expressed in human ovarian cancer tissues and cell lines. miR-221 stands out as a highly elevated miRNA in ovarian cancer, while miR-21 and several members of the let-7 family are found downregulated. Public databases were used to reveal potential targets for the highly differentially expressed miRNAs. In order to experimentally identify transcripts whose stability may be affected by the differentially expressed miRNAs, we transfected precursor miRNAs into human cancer cell lines and used oligonucleotide microarrays to examine changes in the mRNA levels.
MicroRNA expression and identification of putative miRNA targets in ovarian cancer.
Sex
View SamplesMany genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. These super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the a-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. Overall design: Mouse fetal liver erythroid RNA-seq. The RNA of the erythroid cells was metabolically labelled using 4-thiourdine nucleotide analogue supplementation of viable cells in culture. RNA transcripts that incorporated the analogue and hence were synthesised during this period of exposure, were then isolated from the pre-exiting bulk RNA by the addition of a biotin moiety and pull down.
Genetic dissection of the α-globin super-enhancer in vivo.
Specimen part, Subject
View SamplesGene expression analysis of motor cortex after spinal C3 lesion
A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program.
Sex, Specimen part, Time
View SamplesAlthough many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neural degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered sub-cellular transport as well as activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that perturbations in these pathways were indeed the source of altered transcript levels. Overall design: 5 samples, 2 patient-derived SOD1A4V and 3 isogenic control samples where the mutation has been corrected. All samples are motor neurons derived from induced pluripotent stem cells (iPSCs), and isolated after lentiviral infection with an Hb9:RFP construct and FACS purification. Each sample is a separate biological replicate.
Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1.
No sample metadata fields
View SamplesGenomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of human cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes tested regulate proliferation, many performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in SCNAs (somatic copy number changes) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue type-specific genetic network architectures underlie SCNA selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive new insights about the genetic network architecture of aneuploidy in tumors. KRTAPs are a class of human genes that promote proliferation in mammary epithelial cells (HMEC), but the mechanism is not understood. We performed RNAseq to study transcriptional changes associated with oeverxepression of KRTAPs and other oncogenes in hTERT-immortalized human mammary epithelial cells. GSEA analysis revealed the top enriched pathways upregulated by KRTAP expression are E2F-mediated regulation of DNA replication, G1-S specific transcription, cell cycle, translation and ribosome. KRTAP-induced mRNA changes are most closely related to those due to CCND1 expression, including induction of E2F1 transcription factor. Overall design: Analysis of whole transcriptome in HMEC overexpressing different human genes.
Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns.
Specimen part, Disease, Subject
View SamplesA single replicate of exponentially growing DT40 CL18 chicken B lymphoma cells were harvested and extracted RNA was subjected to Illumina GAIIx paired-end sequencing to determine global gene expression. Overall design: Single replicate RNA-seq expression analysis of DT40 cells.
Third Report on Chicken Genes and Chromosomes 2015.
Specimen part, Cell line, Subject
View Samples