Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. Using a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub), which shows a regenerative phenotype, we sought to identify the underlying mechanism.
Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.
Specimen part, Treatment, Time
View SamplesThis experiment aims to identify the biological pathways and diseases associated with the cytokine Interleukin 13 (IL-13) using gene expression measured in peripheral blood mononuclear cells (PBMCs). Overall design: The experiment comprised of samples obtained from 3 healthy donors. The expression profiles of in vitro IL-13 stimulation were generated using RNA-seq technology for 3 PBMC samples at 24 hours. The transcriptional profiles of PBMCs without IL-13 stimulation were also generated to be used as controls. An IL-13R-alpha antagonist (Redpath et al. Biochemical Journal, 2013) was introduced into IL-13 stimulated PBMCs and the gene expression levels after 24h were profiled to examine the neutralization of IL-13 signaling by the antagonist.
Combining multiple tools outperforms individual methods in gene set enrichment analyses.
No sample metadata fields
View SamplesD122p53 mice (a model of D133p53 isoform) are tumour prone, have extensive inflammation and elevated serum IL-6. To investigate the role of IL-6 we crossed 122p53 mice with IL-6 deficient mice. Here we show that loss of IL-6 reduced JAK-STAT signalling, tumour incidence, and metastasis. We also show that D122p53 activates RhoA-ROCK signalling leading to tumour cell invasion which is IL-6 dependent and can be reduced by inhibition of JAK-STAT and RhoA-ROCK pathways. Similarly, we show that 133p53 activates the these pathways, resulting in invasive and migratory phenotypes, in colorectal cancer cells. Gene expression analysis of colorectal tumours showed enrichment of GPCR signalling associated with D133TP53 mRNA. Patients with elevated D133TP53 mRNA levels had a shorter disease free survival. Our results suggest that D133p53 promotes tumour invasion by activation of the JAK-STAT and RhoA-ROCK pathways and that patients whose tumours have high D133p53 may benefit from therapies targeting these pathways.
∆133p53 isoform promotes tumour invasion and metastasis via interleukin-6 activation of JAK-STAT and RhoA-ROCK signalling.
Specimen part
View SamplesWith advances in supportive therapy in the last two decades, mortality rates from ALI/ARDS have improved somewhat, but remain around 30 to 40% with significant morbidity in survivors. Several promising treatments are in various stages of evaluation, but many have failed to prove beneficial in large randomized clinical trials (RCT). The first definitive step forward in ALI therapeutics occurred recently as a result of a large RCT demonstrating a mortality decrease from 40 to 31% with the use of low-volume ventilation strategies. From this, it is clear that the opportunity for successful intervention in ALI exists. However, therapeutic advances remain frustrated by the lack of complete understanding of ALI pathophysiology. This stresses the importance of integrating basic and clinical research of the molecular pathogenesis of this disease. The conclusions of a recent National Heart, Lung, and Blood Institute (NHLBI) Working Group on ALI support this type of research as a priority for future investigations of ALI. One of the areas of research given priority by this ALI Working Group is the issue of ALI severity progression and the role of cells of innate immunity in this process. Currently, the processes that determine which ALI patients progress to ARDS and which do not are unclear. As with many phenotype differences, there is most likely a genetic component involved. The basis for this has been demonstrated. For example, a surfactant protein B (SP-B) polymorphism appears to increase a patients risk of developing ALI from pneumonia. Additionally, a polymorphism in the promoter region of the gene for interleukin-6 (IL-6) has been associated with a poor prognosis in patients with ARDS. Understanding the intracellular processes of these genes and the cells expressing them in ALI progression could lead to the identification of molecular markers of ALI severity and eventually to the development of targeted therapies. An examination of genetically uniform animals will provide a clearer insight into the interaction between immune cells in ALI progression as well as guide future human experiments.
Sepsis alters the megakaryocyte-platelet transcriptional axis resulting in granzyme B-mediated lymphotoxicity.
Specimen part
View SamplesPurpose: Single-cell RNA sequencing has revolutionized cell-type specific gene expression analysis. The goals of this study are to compare cell specific gene expression patterns between retinal cell types originating from the fovea and the periphery of human eyes. Methods: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Results: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Conclusions: Our study generates a large atlas of human retinal transcriptomes at the single cell level. We identified the majority of expected neural and supportive cell types, and describe regional differences in gene expression between the fovea and the periphery. Our results show that that single-cell RNA sequencing can be performed on human retina after cryopreservation, and that cone photoreceptors and Muller cells demonstrate region-specific patterns of gene expression. Overall design: mRNA profiles for thousands of cells from foveal and peripheral retinal isolates were generated from three human donor eyes using 10X Genomics Chromium single-cell system followed by sequencing on an Illumina HiSeq 4000.
Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing.
Subject
View SamplesDatabase of gene expression in different haematopoietic cell types at haemosphere.org Overall design: Comparison of gene expression in different haematopoietic cell types
Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans.
Specimen part, Subject
View SamplesG-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. We developed a neutralizing monoclonal antibody to the murine G-CSF receptor (G-CSFR), which antagonizes binding of murine G-CSF and inhibits G-CSFR signalling. Anti-G-CSFR rapidly halts the progression of established disease in collagen antibody-induced arthritis (CAbIA). Neutrophil accumulation in joints is inhibited, without rendering animals neutropenic, suggesting an effect on homing to inflammatory sites. Neutrophils in the blood and arthritic joints of anti-G-CSFR treated mice show alterations in cell adhesion receptors, while anti-G-CSFR suppresses local production of proinflammatory cytokines and chemokines known to drive tissue damage. Our aim in this study was to use differential gene expression analysis of joint and blood neutrophils to more thoroughly understand the effect of G-CSFR blockade on the inflammatory response following anti-G-CSFR therapy in CAbIA.
Therapeutic Targeting of the G-CSF Receptor Reduces Neutrophil Trafficking and Joint Inflammation in Antibody-Mediated Inflammatory Arthritis.
Sex, Specimen part, Disease, Disease stage, Treatment
View SamplesIndividual genetic variation affects gene expression and cell phenotype by acting within complex molecular circuits, but this relationship is still largely unknown. Here, we combine genomic and meso-scale profiling with novel computational methods to detect genetic variants that affect the responsiveness of gene expression to stimulus (responsiveness QTLs) and position them in circuit diagrams. We apply this approach to study individual variation in transcriptional responsiveness to three different pathogen components in the model response of primary bone marrow dendritic cells (DCs) from recombinant inbred mice strains. We show that reQTLs are common both in cis (affecting a single target gene) and in trans (pleiotropically affecting co-regulated gene modules) and are specific to some stimuli but not others. Leveraging the stimulus-specific activity of reQTLs and the differential responsiveness of their associated targets, we show how to position reQTLs within the context of known pathways in this regulatory circuit. For example, we find that a pleiotropic trans-acting genetic factor in chr1:129-165Mb affects the responsiveness of 35 anti-viral genes only during an anti-viral like stimulus. Using RNAi we uncover RGS16 the likely causal gene in this interval, and an activator of the antiviral response. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in other complex circuits in primary mammalian cells.
Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.
Age, Specimen part
View SamplesIn order to define the genes responsible for the growth and survival of a human castration-resistant prostate cancer cell line, a short term (doxycycline inducible) knockdown system was developed and utilized. Three independent 22Rv1 cell isolates were derived for each of the following doxycycline-inducible shRNAs (shGFP, shAR3, and shVav3) (AR3 = AR-V7). The cells were grown in androgen depleted conditions, plus or minus doxycycline, for three days. RNA from the 18 samples was then sent to the University of Miami Genetics Core for RNA Integrity Number (RIN) evaluation and microarray analysis. Genes differentially regulated by AR-V7 knock-down or VAV3 knock-down were explored as downstream targets of AR-V7 or VAV3, respectively.
Identification of an oncogenic network with prognostic and therapeutic value in prostate cancer.
Specimen part, Cell line
View SamplesA systematic survey of the transcriptional status of individual segments of the developing chick hindbrain (r1-5) and the adjacent region of the embryonic midbrain (m) during the HH11 stage of chick development
Transcriptomic analysis of midbrain and individual hindbrain rhombomeres in the chick embryo.
Specimen part
View Samples