Background: Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk oligosaccharides (HMO). The two most predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve) and Bifidobacterium longum subsp. infantis (B. infantis), both avid HMO-consumer strains. Our laboratory has previously shown that B. infantis, when grown on HMO, increase adhesion to intestinal cells and increase the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to investigate the effects of carbon source—glucose, lactose, or HMO—on the ability of B. breve and B. infantis to adhere to and affect the transcription of intestinal epithelial cells on a genome-wide basis. Results: HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability, both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or lactose grown controls. HMO-grown B. breve and B. infantis both down-regulated genes in Caco-2 cells associated with chemokine activity. Conclusion: The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells. HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria. In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately chosen prebiotics. Overall design: CACO-2 cells incubated with Bifidobacterium longum subsp. infantis grown on (1) glucose, (2) lactose, or (3) human milk oligosaccharides. All experiments were run in triplicate.
Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells.
No sample metadata fields
View SamplesBackground: Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk oligosaccharides (HMO). The two most predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve) and Bifidobacterium longum subsp. infantis (B. infantis), both avid HMO-consumer strains. Our laboratory has previously shown that B. infantis, when grown on HMO, increase adhesion to intestinal cells and increase the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to investigate the effects of carbon source—glucose, lactose, or HMO—on the ability of B. breve and B. infantis to adhere to and affect the transcription of intestinal epithelial cells on a genome-wide basis. Results: HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability, both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or lactose grown controls. HMO-grown B. breve and B. infantis both down-regulated genes in Caco-2 cells associated with chemokine activity. Conclusion: The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells. HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria. In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately chosen prebiotics. Overall design: CACO-2 cells incubated with Bifidobacterium breve grown on (1) glucose, (2) lactose, or (3) human milk oligosaccharides. All experiments were run in triplicate.
Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells.
No sample metadata fields
View SamplesWild-type cells were cultured at 30 deg and cells were harvested. Total RNAs were purified from 3 populations.
Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation.
No sample metadata fields
View SamplesMessenger (m)RNA export from the nucleus is essential for eukaryotic gene expression. Here, we identify a transcript-selective nuclear export mechanism affecting certain human transcripts, enriched for functions in genome duplication and repair, controlled by inositol polyphosphate multikinase (IPMK), an enzyme catalyzing inositol polyphosphate and phosphoinositide turnover. We studied transcripts encoding RAD51, a protein essential for DNA repair by homologous recombination (HR), to characterize the mechanism underlying IPMK-regulated mRNA export. IPMK depletion or catalytic inactivation selectively decreases the nuclear export of RAD51 mRNA, and RAD51 protein abundance, thereby impairing HR. Recognition of a sequence motif in the untranslated region of RAD51 transcripts by the mRNA export factor ALY requires IPMK. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), an IPMK product, restores ALY recognition in IPMK-depleted cell extracts, suggesting a mechanism underlying transcript selection. Our findings implicate IPMK in a transcript-selective mRNA export pathway controlled by phosphoinositide turnover that preserves genome integrity in humans.
Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity.
Cell line
View SamplesKaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). In sub-Saharan Africa, the high prevalence of both HIV-1 and KSHV has made KS a leading cancer in the region, associated with poor prognosis and high mortality due to late medical presentation and advanced disease stages. A better understanding of the cellular and viral transcriptome profiles during neoplastic growth will aid in the definition of biomarkers and cellular functions associated with KS tumorigenesis and progression. Our approach is to examine the transcriptome profile in actual KS lesions versus non-cancer tissues from the same individual for a total of four male African epidemic KS patients. These patients have undetectable HIV-1 plasma viral load after successful anti-retroviral therapy. Our results capture the cellular complexity of in vivo lesion environment and provide a marked contrast to those derived from in vitro monoculture models. The findings demonstrate that latency and immune modulation related functions dominate the viral gene expression pattern. Moreover, KSHV significantly affected the cellular transcriptome profile with genes involved in lipid and glucose metabolism disorder pathways being the most substantially dysregulated. Despite the implied infiltration of immune cells into the lesions as predicted by CIBERSORT, KS tumor continued to progress, suggesting immunological dysfunction in these KS patients despite control of HIV-1 viremia. Lastly, there is limited overlap of our in vivo dataset with in vitro studies, suggesting a limitation of in vitro KS models. Overall design: RNA-seq of Kaposi's sarcoma lesions and control tissues
RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism.
Specimen part, Subject
View SamplesBoth p150 and p110 isoforms of ADAR1 convert adenosine to inosine in double-stranded RNA (dsRNA). The p150 isoform suppresses the dsRNA sensing mechanism that activates the interferon induction mediated by the MDA5-MAVS signaling. In contrast, the biological function of the p110 isoform localized in the nucleus remains largely unknown. Here we show that stress-activated phosphorylation of ADAR1p110 by MKK6/p38 MAP kinases promotes its binding to Exportin-5 and nuclear export to the cytoplasm. Once translocated to the cytoplasmic, ADAR1p110 suppresses apoptosis of stressed cells by protecting many anti-apoptotic gene transcripts that contain 3'UTR dsRNA structures such as those consisting of inverted Alu repeats. ADAR1p110 competitively inhibits binding of Staufen1 to the 3'UTR dsRNAs and antagonizes the Staufen1-mediated mRNA decay mechanism. Our studies revealed a new stress response mechanism regulated by MAP kinases, in which ADAR1p110 translocates to the cytoplasm and regulates a class of mRNAs required for survival of stressed cells. Overall design: Examination of transcription changes due to ADAR1 and double ADAR1/STAU1 knockdown using RNA-seq
ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay.
No sample metadata fields
View SamplesGlobal, genomic responses of erythrocytes to infectious agents have been difficult to measure, because these cells are e-nucleated. We have previously demonstrated that in vitro matured, nucleated erythroblast cells at the orthochromatic stage can be efficiently infected by the human malaria parasite Plasmodium falciparum. We now show that infection of orthochromatic cells induces change in 609 host genes. 592 of these transcripts are up-regulated and associated with metabolic and chaperone pathways unique to P. falciparum infection, as well as a wide range of signaling pathways that are also induced in related apicomplexan infections of mouse hepatocytes or human fibroblast cells. Our data additionally show that polychromatophilic cells, which precede the orthochromatic stage and are not infected when co-cultured with P. falciparum, up-regulate a small set of 35 genes, 9 of which are associated with pathways of hematopoiesis and/or erythroid cell development. These data unexpectedly predict that blood stage P. falciparum may induce host responses common to infections of other pathogens. Further P. falciparum may modulate gene expression in bystander erythroblasts and thus influence pathways of erythrocyte development.
P. falciparum modulates erythroblast cell gene expression in signaling and erythrocyte production pathways.
Specimen part
View SamplesIdentification of genes regulated by GATA-1 independent of the cofactor FOG-1.
Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function.
No sample metadata fields
View SamplesDifferentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression, but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as three changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that three of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.
Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis.
No sample metadata fields
View SamplesAlthough the cytokine-inducible transcription factors STAT5a/b promote proliferation of a wide range of cell types, there are cell- and context specific cases in which loss of STAT5a/b results in enhanced cell proliferation. Here we report that loss of STAT5a/b from mouse embryonic fibroblasts (MEFs) leads to enhanced proliferation, which was linked to reduced levels of the cell cycle inhibitor p15INK4B and p21CIP1. We further demonstrate that growth hormone through the transcription factor STAT5a/b enhances expression of the cdkn2B gene and that STAT5a binds to GAS sites within the promoter. We have recently demonstrated that ablation of STAT5a/b from liver results in hepatocellular carcinoma upon a CCl4 insult. We also established that in liver tissue, like in MEFs, STAT5a/b activates expression of the cdkn2B gene. Loss of STAT5a/b led to diminished p15INK4B and increased hepatocyte proliferation. This study for the first time demonstrates that cytokines through STAT5a/b can induce the expression of a key cell cycle inhibitor. These experiments therefore shed a light on the context-specific role of STAT5a/b as tumor suppressors.
The transcription factors signal transducer and activator of transcription 5A (STAT5A) and STAT5B negatively regulate cell proliferation through the activation of cyclin-dependent kinase inhibitor 2b (Cdkn2b) and Cdkn1a expression.
Specimen part
View Samples