The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature (Core OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
The molecular signature of the stroma response in prostate cancer-induced osteoblastic bone metastasis highlights expansion of hematopoietic and prostate epithelial stem cell niches.
Specimen part
View SamplesSkeletal muscle of insulin resistant individuals is characterized by lower fasting lipid oxidation and reduced ability to switch between lipid and glucose oxidation. The purpose of the present study was to examine if impaired metabolic switching could be induced by chronic hyperglycemia. Human myotubes were treated with or without chronic hyperglycemia (HG) (20 mmol/l glucose for 4 days), and the metabolism of [14C]oleic acid (OA) and [14C]glucose was studied. Acute glucose (5mmol/l) suppressed OA oxidation by 50% in normoglycemic (NG) (5.5 mmol/l glucose) cells. Myotubes exposed to chronic hyperglycemia showed a significantly reduced OA uptake and oxidation to CO2, whereas acid-soluble metabolites were increased. Glucose suppressibility, the ability of acute glucose to suppress lipid oxidation, was significantly reduced to 21%, while adaptability, the capacity to increase lipid oxidation with increasing fatty acid availability, was unaffected. Glucose uptake and oxidation was significantly reduced by about 40%. Substrate oxidation in presence of mitochondrial uncouplers showed that net and maximal oxidative capacities were significantly reduced after hyperglycemia, and the concentration of ATP was reduced by 25%. However, none of the measured mitochondrial genes were downregulated nor was mitochondrial content. Microarray showed that no genes were significantly regulated by chronic hyperglycemia. Addition of chronic lactate reduced both glucose and OA oxidation to the same extent as hyperglycemia, and this effect was specific for lactate. In conclusions, chronic hyperglycemia reduced substrate oxidation in skeletal muscle cells and impaired the metabolic switching. The effect is most likely due to an induced mitochondrial dysfunction.
Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes.
Specimen part
View SamplesHuge efforts are made to engineer safe and efficient genome editing tools. An alternative might be the harnessing of ADAR-mediated RNA editing. We now present the engineering of chemically optimized antisense oligonucleotides that recruit endogenous human ADARs to edit endogenous transcripts in a simple and programmable way, an approach we refer to as RESTORE. Notably, RESTORE was markedly precise, and there was no evidence for perturbation of the natural editing homeostasis. We applied RESTORE to a panel of standard human cell lines, but also to several human primary cells including hepatocytes. In contrast to other RNA and DNA editing strategies, this approach requires only the administration of an oligonucleotide, circumvents the ectopic expression of proteins, and thus represents an attractive platform for drug development. In this respect we have shown the repair of the PiZZ mutation causing a1-antitrypsin deficiency and the editing of phosphotyrosine 701 in STAT1. Overall design: Identification of off-target editing events and Interferon-a influence in HeLa cell line transfected with an ASO for RNA editing by RNA-Seq, 2 samples (ASO +/- IFN) , 2 control sample (+/-IFN), 2 biologically independent experiments for each sample, 8 samples in total
Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides.
Cell line, Treatment, Subject
View SamplesMicroarray analysis was used to compare the gene expression profiles of Deaf-1-transduced mouse mammary epithelial cells (MECs) relative to Deaf-1-deficient MECs.
Deaf-1 regulates epithelial cell proliferation and side-branching in the mammary gland.
No sample metadata fields
View SamplesType 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic insulin-producing ß cells. CD4+ T cells are integral to the pathogenesis of T1D, but biomarkers that define their pathogenic status in T1D are lacking. miRNAs have essential functions in a wide range of tissues/organs, including the immune system. We reasoned that CD4+ T cells from individuals at high risk for T1D (pre-T1D) might be distinguished by an miRNA signature. We sorted CD4+ T cells from 9 healthy and 7 pre-T1D individuals into 6 subsets, namely naïve, resting regulatory (rTreg), activated regulatory (aTreg), transitional memory (Ttm), central memory (Tcm) and effector memory (Tem) cells, and then compared miRNA profiles between these subsets and between pre-T1D and healthy individuals by deep sequencing. Differential expression of miRNAs was detected in each of the CD4+ T cell subsets. For example, expression of miRNAs that induce apoptosis (miR-15a) or FOXP3 instability (miR-31) was increased in rTreg and aTreg cells, respectively, in pre-T1D individuals, whereas miR-150 was increased in Tem cells of pre-T1D individuals. Importantly, increased miR-150 expression could be detected by qRT-PCR in total CD4+ T and PBMCs of pre-T1D individuals. Consistent with it being a marker of pathogenic CD4+ T cells, we showed that miR-150 regulates IFN-? production in mouse CD4+ T cells. Thus, comprehensive profiling identifies miRNA profiles that not only distinguish CD4+ T cell subsets but also discriminate individuals with preclinical T1D. The ability to detect differentially expressed miRNAs in total CD4+ T cells or PBMCs should facilitate clinical application of miRNAs as biomarkers. Overall design: CD4+T cells from healthy and individuals at high risk for autoimmune type 1 diabetes were sorted into 6 subsets, which resulted in 80 samples, 38 for healthy and 42 for high risk individuals. Each sample was barcoded and miRNA libraries were constructed and subsequently subjected to deep-sequencing on the Illumina GAII or HiSeq platform. The Fastq files are have deconvoluted and stripped of the barcode adaptor sequences.
MicroRNAs in CD4(+) T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes.
Subject
View SamplesThese data show that the genes that distinguish myofibroblasts from fibroblasts are myriad, and that some genes not traditionally associated with myofibroblast differentiation may serve as novel therapeutic targets for fibrosing disorders.
Reversal of the Transcriptome by Prostaglandin E2 during Myofibroblast Dedifferentiation.
Specimen part, Cell line, Treatment
View SamplesRationale: Monitoring and controlling cardiomyocyte activity with optogenetic tools offers exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac excitation from the cellular to the whole heart level. Objective: To test the hypothesis that cardiomyocyte-targeted voltage-sensitive fluorescence protein 2.3 (VSFP2.3) can be exploited as optogenetic tool for the monitoring of electrical activity in isolated cardiomyocytes and the whole heart as well as function and maturity in induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Methods and Results: We first generated mice with cardiomyocyte-restricted expression of VSFP2.3 and demonstrated distinct sarcolemmal localization of VSFP2.3 without any signs for associated pathologies (assessed by echocardiography). Optically recorded VSFP2.3 signals correlated well with membrane voltage measured simultaneously by patch-clamping. The utility of VSFP2.3 for human action potential recordings was confirmed by simulation of immature and mature action potentials in murine VSFP2.3 cardiomyocytes. Optical cardiograms (OCGs) could be monitored in whole hearts ex vivo and minimally invasively in vivo via fiber optics at physiological heart rate (10 Hz) and under pacing-induced arrhythmia. Finally, we reprogrammed tail-tip fibroblasts from transgenic mice and used the VSFP2.3 sensor for benchmarking functional and structural maturation in iPSC-derived cardiomyocytes. Conclusions: We introduce a novel transgenic voltage-sensor model as a new method in cardiovascular research and provide proof-of-concept for its utility in optogenetic sensing of physiological and pathological excitation in mature and immature cardiomyocytes in vitro and in vivo. Overall design: Determination of transgene (VSFP2.3) cardiotoxicity
Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator.
No sample metadata fields
View SamplesC5aR1, a receptor for the complement activation proinflammatory fragment, C5a, is primarily expressed on cells of the myeloid lineage, and to a lesser extent on endothelial cells and neurons in brain. Previous work demonstrated C5aR1 antagonist, PMX205, decreased amyloid pathology and suppressed cognitive deficits in Alzheimer Disease (AD) mouse models. In the Arctic AD mouse model, genetic deletion of C5aR1 prevented behavior deficits at 10 months. However, the molecular mechanisms of this protection has not been definitively demonstrated. To understand the role of microglial C5aR1 in the Arctic AD mouse model, we have taken advantage of the CX3CR1GFP and CCR2RFP reporter mice to distinguish microglia as GFP-positive and infiltrating monocytes as GFP and RFP positive, for subsequent transcriptome analysis on specifically sorted myeloid populations from wild type and AD mouse models. Immunohistochemical analysis of mice aged to 2, 5, 7 and 10 months showed no change in amyloid beta (Ab) deposition in the Arctic C5aR1 knockout (KO) mice relative to that seen in the Arctic mice. Of importance, no CCR2+ monocytes/macrophages were found near the plaques in the Arctic brain with or without C5aR1. RNA-seq analysis on microglia from these mice identified inflammation related genes as differentially expressed, with increased expression in the Arctic mice relative to wildtype and decreased expression in the Arctic/C5aR1KO relative to Arctic. In addition, phagosomal-lysosomal proteins and protein degradation pathways that were increased in the Arctic mice were further increased in the Arctic/C5aR1KO mice. These data are consistent with a microglial polarization state with restricted induction of inflammatory genes and enhancement of clearance pathways. Overall design: Microglia mRNA profiles of wildtype (WT), C5aR1 knockout (C5aR1KO), Arctic (ARC) and Arctic C5aR1 knockout (ARCKO) mice at 2, 5, 7 and 10-11 month. Duplicates were sequenced for each genotype on Illumina HiSeq 2500 platform.
Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss.
Age, Specimen part, Subject
View SamplesThe emergence of fully antimicrobial resistant Neisseria gonorrhoeae has led global public health agencies to identify a critical need for next generation anti-gonococcal pharmaceuticals. The development and success of these compounds will rely upon valid pre-clinical models of gonorrhoeae infection. We recently developed and reported the first model of upper genital tract gonococcal infection. During initial characterization, we observed significant reproductive cycle-based variation in infection outcome. When uterine infection occurred in the diestrus phase, there was significantly greater pathology than during estrus phase. The aim of this study was to evaluate transcriptional profiles of infected uterine tissue from mice in either estrus or diestrus phase in order to elucidate possible mechanisms for these differences. Genes and biological pathways with phase-independent induction during infection showed a chemokine dominant cytokine response to Neisseria gonorrhoeae. Despite general induction being phase-independent, this common anti-gonococcal response demonstrated greater induction during diestrus phase infection. Greater activity of granulocyte adhesion and diapedesis regulators during diestrus infection, particularly in chemokines and diapedesis regulators, was also shown. In addition to a greater induction of the common anti-gonococcal response, Gene Set Enrichment Analysis (GSEA) identified a diestrus-specific induction of type-1 interferon signaling pathways. This transcriptional analysis of murine uterine gonococcal infection during distinct points in the natural reproductive cycle provided evidence for a common anti-gonococcal response characterized by significant induction of granulocyte chemokine expression and high proinflammatory mediators. The basic biology of this host response to N. gonorrhoeae in estrus and diestrus is similar at the pathway level, but varies drastically in magnitude. Overlaying this, we observed type-1 interferon induction specifically in diestrus infection where greater pathology is observed. This supports recent work suggesting this pathway has a significant, possibly host-detrimental, function in gonococcal infection. Together these findings lay the groundwork for further examination of the role of interferons in gonococcal infection. Additionally, this work enables the implementation of the diestrus uterine infection model using the newly characterized host response as a marker of pathology and its prevention as a correlate of candidate vaccine efficacy and ability to protect against the devastating consequences of N. gonorrhoeae-associated sequelae.
Murine host response to Neisseria gonorrhoeae upper genital tract infection reveals a common transcriptional signature, plus distinct inflammatory responses that vary between reproductive cycle phases.
Specimen part, Treatment
View SamplesThe ubiquitous efflux transporter ATP-binding cassette sub-family C member 5 (ABCC5) is present at high levels in the blood-brain barrier, neurons and glia, but its in vivo substrates and function are not known. Untargeted metabolomic screens revealed that Abcc5-/- mice accumulate endogenous glutamate conjugates and analogs in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate (NAAG), for example, was over 2-fold higher in Abcc5-/- brain. In line with ABCC5-mediated transport, the metabolites that accumulated in Abcc5-/- tissues were depleted in cultured cells that overexpressed human ABCC5. Using membrane vesicles, we show that ABCC5 not only transports the metabolites detected in our screen, but also a wide range of peptides containing a C-terminal glutamate. Glutamate conjugates are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. We found that ABCC5 also transports exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid and N-methyl-D-aspartate (NMDA) and the therapeutic glutamate analog ZJ43. Taken together, we have identified ABCC5 as a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins and drugs. Overall design: A set of 5 wildtype brains was compared to a set of 5 Abcc5-knockout mouse brains
ATP-binding Cassette Subfamily C Member 5 (ABCC5) Functions as an Efflux Transporter of Glutamate Conjugates and Analogs.
No sample metadata fields
View Samples