Bone marrow derived macrophages were infected with Listeria monocytogenes for 4 hours. We investigated differently expressed genes in the absence of DDX3X upon infection and also in steady state conditions. Overall design: Investigation of gene expression in wt and Ddx3x deficient bone marrow derived macrophages in response to Listeria monocytogenes infection.
The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition.
Specimen part, Cell line
View SamplesIntra-tumor heterogeneity is a hallmark of glioblastoma multiforme, and thought to negatively affect treatment efficacy. Here we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability between clones, including a wide range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-to-mesenchymal shift in the transcriptome.
Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition.
Specimen part, Cell line
View SamplesGene expression variation upon folate deficiency and repletion in human foreskin keratinocytes immortalized by HPV16E6E7 Overall design: Effects of folate modulation on several cellular events such as DNA stability
Folate Repletion after Deficiency Induces Irreversible Genomic and Transcriptional Changes in Human Papillomavirus Type 16 (HPV16)-Immortalized Human Keratinocytes.
Specimen part, Subject
View SamplesMore than two thirds of breast cancers express the estrogen receptor (ER) and depend on estrogen for growth and survival. Therapies targeting ER function including aromatase inhibitors that block the production of estrogens and ER antagonists that alter ER transcriptional activity play a central role in the treatment of ER+ breast cancers of all stages. In contrast to ER- breast cancers, which frequently harbor mutations in the p53 tumor suppressor, ER+ breast cancers are predominantly wild type for p53. Despite harboring wild type p53, ER+ breast cancer cells are resistant to chemotherapy-induced apoptosis in the presence of estrogen. Using genome-wide approaches we have addressed the mechanism by which ER antagonizes the pro-apoptotic function of p53. Interestingly both ER agonists such as estradiol and selective ER modulators (SERM) such as tamoxifen promote p53 antagonism. In contrast the full ER antagonist fulvestrant blocks the ability of ER to inhibit p53-mediated cell death. This suggests an improved strategy for the treatment of ER+ breast cancer utilizing antagonists that completely block ER action together with drugs that activate p53-mediated cell death.
Estrogen receptor prevents p53-dependent apoptosis in breast cancer.
Cell line, Treatment
View SamplesAlu SINEs are the most numerous frequently occurring transcription units in our genome and possess sequence competence for transcription by RNA Pol III. However, through poorly understood mechanisms, the Alu RNA levels are maintained at very low levels in normal somatic cells with obvious benefits of low rates of Alu retrotransposition and energy-economical deployment of RNA Pol III to the tRNA genes which share promoter structure and polymerase requirements with Alu SINEs. Using comparative ChIP sequencing, we unveil that a repeat binding protein, CGGBP1, binds to the transcriptional regulatory regions of Alu SINEs thereby impeding Alu transcription by inhibiting RNA Pol III recruitment. We show that this Alu-silencing depends on growth factor stimulation of cells and subsequent tyrosine phosphorylation of CGGBP1. Importantly, CGGBP1 ensures a sequence-specific discriminative inhibition of RNA Pol III activity at Alu promoters, while sparing the structurally similar tRNA promoters. Our data suggest that CGGBP1 contributes to growth-related transcription by preventing the hijacking of RNA Pol III by Alu SINEs.
Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs.
No sample metadata fields
View SamplesEstrogen has vascular protective effects in premenopausal women and in women under 60 receiving hormone replacement therapy. However, estrogen also increases risks of breast and uterine cancers and of venous thromboses linked to upregulation of coagulation factors in the liver. In mouse models, the vasoprotective effects of estrogen are mediated by the estrogen receptor alpha (ERa) transcription factor. Here, through next generation sequencing approaches, we show that almost all of the genes regulated by 17-b-estradiol (E2) differ between mouse aorta and mouse liver, and that this is associated with a distinct genomewide distribution of ERa on chromatin. Bioinformatic analysis of E2-regulated promoters and ERa binding site sequences identify several transcription factors that may determine the tissue specificity of ERa binding and E2-regulated genes, including the enrichment of NFkB, AML1 and AP-1 sites in the promoters of E2 downregulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggests ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. Our results also highlight the likely importance of rapid signaling of membrane-associated ERa to cellular kinases (altering the activities of transcription factors other than ER itself) in determining tissue specific transcriptional responses to estrogen. Overall design: The aortas or liver fragments of wild-type C57/BL6 mice were incubated ex vivo with 10nM E2 or ethanol vehicle for 4 hours before harvesting for RNA collection. Each condition was performed with two biological replicates, and each replicate contained aortas or liver fragments from 4 mice.
Research resource: Aorta- and liver-specific ERα-binding patterns and gene regulation by estrogen.
No sample metadata fields
View SamplesmRNA profiles of thousands of human tumors are available, but methods to deduce oncogenic signaling networks from these data lag behind. It is especially challenging to identify main-regulatory routes, and to generalize conclusions obtained from experimental models. We designed the bioinformatic platform R2 in parallel with a wet-lab approach of neuroblastoma. Here we demonstrate how R2 facilitates an integrated analysis of our neuroblastoma data. Analysis of the MYCN pathway suggested important regulatory connections to the polyamine synthesis route, the Notch pathway and the BMP/TGF pathway. A network of genes emerged connecting major oncogenes in neuroblastoma. Genes in the network carried strong prognostic values and were essential for tumor cell survival.
Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes.
Specimen part
View SamplesBacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. Overall design: High-resolution comparative Dual RNA-seq time-course
Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions.
No sample metadata fields
View SamplesBacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. Overall design: Dual RNA-seq of further sRNA mutants
Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions.
No sample metadata fields
View Samples