Objective: Physical exercise and vitamin E are considered effective treatments of nonalcoholic fatty liver and other metabolic diseases. However, vitamin E has also been shown to interfere with the adaptation to exercise training, in particular for the skeletal muscle. Here, we studied the hypothesis that vitamin E also interferes with the metabolic adaptation of the liver to acute exercise.
A Vitamin E-Enriched Antioxidant Diet Interferes with the Acute Adaptation of the Liver to Physical Exercise in Mice.
Sex, Specimen part
View SamplesMuscle contraction during exercise is the major stimulus for the release of peptides and proteins (myokines) that are supposed to take part in the benefical adaptation to exercise. We hypothesize that application of an in vitro exercise stimulus as electric pulse stimulation (EPS) to human myotubes enables the investigation of the human muscle secretome in a clearly defined model. We applied EPS for 24 h to primary human myotubes and studied the whole genome-wide transcriptional response and as well as the release of candidate myokines. We observed 183 differentially regulated transcripts with fold-changes > 1.3. The transcriptional response resembles several properties of the in vivo situation in the skeletal muscle after endurance exercise, namely significant enrichment of pathways associated with interleukin and chemokine signaling, lipid metabolism, and anti-oxidant defense; notably without increased release of creatin kinase.
Cytokine response of primary human myotubes in an in vitro exercise model.
Sex, Specimen part, Subject
View SamplesMicroarray analysis of wild type plants and plants with reduced (ago1-27 and se-1) or increased miR156 levels (se-1 p35S:MIR156). Shoot apices were dissected from 20-day-old, short-day grown plants.
miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana.
Age, Specimen part
View SamplesThe murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, B. burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN responsive genes was observed in severely arthritic C3H mice at one week of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, as C57BL/6-IL10-/- mice infected with B. burgdorferi develop more severe arthritis that C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at two and four weeks post infection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.
Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis.
No sample metadata fields
View SamplesBehavioral analysis confirmed that the 14-day social defeat sessions resulted in induction of depressive-like states measured in social interaction and light/dark tests. The combined data show that stress-induced depressive states are associated with molecular and structural changes that demyelinate the prefrontal cortex.
Chronic social defeat reduces myelination in the mouse medial prefrontal cortex.
Specimen part
View Samples4-day-old XW119 seedlings were treated with 2% Ethanol on MS agar plates under light, and samples were collected at 0, 1, 2, 4 hours.
STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings.
Age, Compound, Time
View SamplesPU.1 is a key transcription factor for macrophage differentiation. Novel PU.1 target genes were identified by mRNA profiling of PU.1-deficient progenitor cells (PUER) before and after PU.1 activation. We used two different types of Affymetrix DNA-microarrays (430 2.0 arrays and ST 1.0 exon arrays) to characterize the global PU.1-regulated transcriptional program underlying the early processes of macrophage differentiation.
Transcriptomic profiling identifies a PU.1 regulatory network in macrophages.
No sample metadata fields
View SamplesWe were interested in determining what genes might be controlled by TFAP2C and/or TFAP2A, either directly or indirectly through regulation of ER-alpha and potentially other signaling pathways. We performed an microarray analysis in MCF7 cells with elimination of either TFAP2C or TFAP2A. The patterns of gene expression with alteration of TFAP2 activity were compared to changes in expression induced by estrogen exposure. Knock-down of TFAP2C in the presence of estrogen altered the pattern of several known ERalpha-regulated genes and a number of genes outside the estrogen-regulated pathways.
TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling.
Specimen part
View SamplesTissues of Arabidopsis plants overexpressing artificial microRNAs were compared to wild_type and respective target gene mutants (duplicate arrays)
Highly specific gene silencing by artificial microRNAs in Arabidopsis.
Specimen part
View SamplesThe aim of this experiment is to test the ability of the ortholog of Arabidopsis LFY gene from Leanworthia crassa (Lcr) to complement an Arabidopsis LFY mutant. Plants used are homozygous lfy6 mutants (EMS alleles) in Ler background which are transformed or not (for the lfy6 mutant) by genomic clones for Arabidopsis LFY (AthLFY) or Leanworthia crassa LFY (LcrLFY). Flowering was synchronized by growing plants in SD then shifting them to LD. 2 time points samples (wild type Ler) were taken at the end of the SD period as a reference for genes induced by shifting to LD, irrespective of the status at the LFY locus.
Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leavenworthia crassa.
Age, Specimen part, Time
View Samples