To address the role of INO80/SWR-type remodeling complexes, we deleted Ep400 at defined times of mouse oligodendrocyte development. Whereas oligodendrocyte precursors are specified and develop normally without Ep400, terminal differentiation is dramatically impaired resulting in hypomyelination. RNA-Seq studies were performed on cultured and FACS sorted control and Ep400-deficient mouse oligodendrocytes to analyze changes in gene expression. These revealed that genes associated with the myelination program and with response to DNA damage are altered in Ep400-deficient oligodendrocytes. Overall design: OPC mRNA profiles of 6-day old control (ctrl) and Ep400 cko mice were generated using the Illumina HiSeq 2500 platform.
Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system.
Specimen part, Cell line, Subject
View SamplesResearch in human immunobiology is mainly based on working with peripheral blood mononuclear cells (PBMC). However, recent investigations have shown that circulating CD4+ T cells are less sensitive to several T-cell activating monoclonal antibodies (mAb) and to recall antigens as compared to tissue-resident cells or cells that were in-vitro cultured at a high cell density of 10^7 cells/mL for 2 days at 37C and 5% CO2 (RESTORE protocol, Rmer et al., Blood 2011, PMID: 21931118). To explain the increase in sensitivity of CD4+ T-cells to mAbs and recall antigens on a molecular level, we performed microarray hybridizations of total RNA from T-cells isolated from PBMC that were cultured at a low or high cell density. To avoid the detection of genes that are up- or down-regulated by the culture process itself, we used low cell density cultured PBMC, instead of freshly prepared PBMC.
High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.
Age, Specimen part, Treatment
View SamplesSpiral ganglion neurons (SGNs) and the associated components of the auditory nerve are primary carriers of auditory information from hair cells to the brain. Loss of SGNs occurs with many pathological conditions, resulting in permanent sensorineural hearing loss. Neural stem/progenitors (NSPs) have been well-characterized in several locations of adult brain and retina. However, it is unclear whether NSPs are present in the adult auditory nerve. Here we examined the self-renewal potential of the adult auditory nerve using ouabain application as a well-established mouse model of acute SGN injury. The observed increase in cell proliferation, alteration in enchromatin/heterochromatin ratio and down-regulation of histone deacetylase expression in glial cells suggest that the quiescent glial cells convert to an activated state after SGN degeneration. This was further confirmed by global gene expression analysis of injured auditory nerves, which showed up-regulation of numerous neurogenesis- and/or development-associated genes shortly after ouabain exposure. These genes include molecular markers commonly used for the identification of NSPs. Under a strict culture regimen, auditory nerve-derived cells of adult mouse ears gave rise to neurospheres, suggesting that multipotent NSPs are present in adult cochlear nerve. Neurosphere assays on Sox2 transgenic mice revealed that Sox2+ glial cells are the source for NSPs. Our data also showed that acute injury or hypoxia enhances neurosphere formation. Taken together, our study revealed that glial cells of adult cochlea exhibit several NSP characteristics, and hence these mature non-neuronal cells may be important targets for promoting self-repair of degenerative auditory nerves.
Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.
Specimen part
View SamplesSpiral ganglion neurons (SGNs) and the associated components of the auditory nerve are primary carriers of auditory information from hair cells to the brain. Loss of SGNs occurs with many pathological conditions, resulting in permanent sensorineural hearing loss. Neural stem/progenitors (NSPs) have been well-characterized in several locations of adult brain and retina. However, it is unclear whether NSPs are present in the adult auditory nerve. Here we examined the self-renewal potential of the adult auditory nerve using ouabain application as a well-established mouse model of acute SGN injury. The observed increase in cell proliferation, alteration in enchromatin/heterochromatin ratio and down-regulation of histone deacetylase expression in glial cells suggest that the quiescent glial cells convert to an activated state after SGN degeneration. This was further confirmed by global gene expression analysis of injured auditory nerves, which showed up-regulation of numerous neurogenesis- and/or development-associated genes shortly after ouabain exposure. These genes include molecular markers commonly used for the identification of NSPs. Under a strict culture regimen, auditory nerve-derived cells of adult mouse ears gave rise to neurospheres, suggesting that multipotent NSPs are present in adult cochlear nerve. Neurosphere assays on Sox2 transgenic mice revealed that Sox2+ glial cells are the source for NSPs. Our data also showed that acute injury or hypoxia enhances neurosphere formation. Taken together, our study revealed that glial cells of adult cochlea exhibit several NSP characteristics, and hence these mature non-neuronal cells may be important targets for promoting self-repair of degenerative auditory nerves.
Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.
Specimen part
View SamplesSpiral ganglion neurons (SGNs) and the associated components of the auditory nerve are primary carriers of auditory information from hair cells to the brain. Loss of SGNs occurs with many pathological conditions, resulting in permanent sensorineural hearing loss. Neural stem/progenitors (NSPs) have been well-characterized in several locations of adult brain and retina. However, it is unclear whether NSPs are present in the adult auditory nerve. Here we examined the self-renewal potential of the adult auditory nerve using ouabain application as a well-established mouse model of acute SGN injury. The observed increase in cell proliferation, alteration in enchromatin/heterochromatin ratio and down-regulation of histone deacetylase expression in glial cells suggest that the quiescent glial cells convert to an activated state after SGN degeneration. This was further confirmed by global gene expression analysis of injured auditory nerves, which showed up-regulation of numerous neurogenesis- and/or development-associated genes shortly after ouabain exposure. These genes include molecular markers commonly used for the identification of NSPs. Under a strict culture regimen, auditory nerve-derived cells of adult mouse ears gave rise to neurospheres, suggesting that multipotent NSPs are present in adult cochlear nerve. Neurosphere assays on Sox2 transgenic mice revealed that Sox2+ glial cells are the source for NSPs. Our data also showed that acute injury or hypoxia enhances neurosphere formation. Taken together, our study revealed that glial cells of adult cochlea exhibit several NSP characteristics, and hence these mature non-neuronal cells may be important targets for promoting self-repair of degenerative auditory nerves.
Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcription factor prospero homeobox protein 1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis.
Specimen part
View SamplesThe HMG-domain containing SoxC transcription factors Sox4 and Sox11 are expressed in the vertebrate central nervous system in neuronal precursors and neuroblasts. They are required during early stages of neurogenesis.
The transcription factor prospero homeobox protein 1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis.
Specimen part
View SamplesThe HMG-domain containing SoxC transcription factors Sox4 and Sox11 are expressed in the vertebrate central nervous system in neuronal precursors and neuroblasts. They are required during early stages of neurogenesis.
The transcription factor prospero homeobox protein 1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis.
Specimen part
View SamplesSchwann cell maturation is tightly controlled by a set of transcriptional regulators. We have deleted the zinc-finger transcription factor Sip1 specifically from immature Schwann cells and observed a dramatic developmental delay.
Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair.
Age, Specimen part
View Samples