Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism. Overall design: RNA-Seq from total RNA of zebrafish larvae during (5 dpf) the diurnal cycle. Time-series mRNA profiles of untreated wild type (WT), rx3t25327/t25327 [rx3 strong] and rx3t25181/t25181 [rx3 weak] mutant larvae as well as dexamethasone treated WT and rx strong larvae were generated by deep sequencing.
Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids.
No sample metadata fields
View SamplesThe cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here we show that cochlear rhythms are system-driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Since the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and that GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses. Overall design: Cochlear samples from sham operated or adrenalectomized (ADX) CBA/Sca mice were collected every 4th hour during a 24h period and subjected to RNAseq (n=3 per time point, corresponding to a total of 36 samples).
Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids.
Age, Specimen part, Cell line, Subject
View SamplesGut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of testis and ovaries of conventional raised (convR) and Germ-free (GF) female mice under ad libitum feeding regime.
The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.
Sex, Specimen part, Cell line, Subject
View SamplesGut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of primary hepatocytes treated with serum of conventionally raised (convR) and Germ-free (GF) male and female mice.
The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.
Specimen part, Subject
View SamplesGut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of Germ-free (GF) male mice liver injected with ghrelin.
The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesGut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of Germ-free (GF) male mice liver injected with growth hormone.
The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesThis study is a follow-up to GSE35790.
Transcriptional regulatory logic of the diurnal cycle in the mouse liver.
Sex, Specimen part, Time
View SamplesCD69 is a transmembrane protein expressed on the surface of activated leukocyte. The ligand for CD69 and the intracellular signaling pathway of this molecule are yet unknown. It is widely used as a marker of activated lymphocyte, but its function in immune system is not known.
CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential.
Specimen part
View SamplesThe circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. Extensive rhythmic transcription was observed in human skeletal muscle in comparison to in vitro cell culture. However, nearly half of the in vivo rhythmicity was lost at the mRNA accumulation level. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin stimulated glucose uptake were significantly reduced upon CLOCK depletion. Altogether, our findings suggest an essential role for cell-autonomous circadian clocks in coordinating muscle glucose homeostasis and lipid metabolism in humans. Overall design: 100 samples from 2 donors. Together with GSE108539, part of the same study described above.
Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle.
Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Specific genomic and transcriptomic aberrations in tumors induced by partial hepatectomy of a chronically inflamed murine liver.
Sex, Specimen part, Treatment
View Samples