Identification of blood biomarkers that prospectively predict Mycobacterium tuberculosis treatment response. Overall design: There are a total of 914 samples used in this design. This involves samples from 100 cases and 38 controls. Most of the samples have 2 technical replicates where as 2 samples have 4. Samples from the TB cases have been collected on the start day of TB treatment and on 1,4 and 24 weeks after treatment as well. For some subjects we also have samples after the subject has been cured. The case or TB Subjects have been categorized by the nature of their response as definite,probable or possible cure. The day of cure is presented in the time to negativity column. Also provided in the metadata are the MGIT -Mycobacteria Growth Indicator Tube and XPERT (cartridge based nucleic acid amplification test, automated diagnostic test that can identify Mycobacterium tuberculosis (MTB)) values at the various times of sample collection for all TB Subjects.
Host blood RNA signatures predict the outcome of tuberculosis treatment.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesChanges in gene expression on MNV infection of RAW264.7 cells
Murine norovirus replication induces G0/G1 cell cycle arrest in asynchronously growing cells.
Cell line
View SamplesInhibition of the myostatin signaling pathway is emerging as a promising therapeutic means to treat muscle wasting disorders. Activin type IIB receptor is the putative myostatin receptor, and a soluble activin receptor (ActRIIB-Fc) has been demonstrated to potently inhibit a subset of TGF- family members including myostatin. In order to determine reliable and valid biomarkers for myostatin pathway inhibition, we assessed gene expression profiles for quadriceps muscles from mice treated with ActRIIB-Fc compared to mice genetically lacking myostatin and control mice.
Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor.
Sex, Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.
Sex, Specimen part
View SamplesThe synthesis of fatty acids and cholesterol is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs because of gene knockout of SREBP cleavage-activating protein (SCAP) required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. Application of stringent combinatorial criteria to the transgenic/knockout approach allows identification of genes whose activities are likely controlled directly by the SREBPs.
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.
Sex, Specimen part
View SamplesThe synthesis of fatty acids and cholesterol is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs because of gene knockout of SREBP cleavage-activating protein (SCAP) required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. Application of stringent combinatorial criteria to the transgenic/knockout approach allows identification of genes whose activities are likely controlled directly by the SREBPs.
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.
Sex, Specimen part
View SamplesThe synthesis of fatty acids and cholesterol is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs because of gene knockout of SREBP cleavage-activating protein (SCAP) required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. Application of stringent combinatorial criteria to the transgenic/knockout approach allows identification of genes whose activities are likely controlled directly by the SREBPs.
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.
Sex, Specimen part
View SamplesE. coli MG155 cells were grown at different grwoth rates in mixed substrate culture. To facilitate different metaoblic status, cells adjust substrate consumption behavior which must be reflected in the gene expression profiles of metablism network. The metabolism network including the substrate transporter systems is our study focus.
Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View Samples