This SuperSeries is composed of the SubSeries listed below.
Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.
Sex, Specimen part, Cell line
View SamplesThe self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them good sources of cells for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a systematic study over more than 100continuous passages to identify characteristics of culture conditions (including passage method, substrate, and media type) that influence the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. The predominant effects we observed were increased genetic instability with enzymatic passage, higher cell proliferation with feeder-free substrate, and variations among cultures in global gene expression and DNA methylation with time in culture. We observed recurrent duplications in two genomic regions that have been noted in earlier studies to be hotspots for duplication in hPSCs, as well as a previously unreported recurrent deletion of the tumor suppressor gene TP53 in all but one of the long-term culture conditions; the exception was the condition using mechanical passaging on feeder layers. The deletion of TP53 is associated with decreased mRNA expression of TP53, as well as alterations in the expression of several other genes in the TP53 pathway, which taken together indicate a decrease in the function of the TP53 pathway. Our results highlight the need for careful assessment of effects of culture conditions on cells intended for clinical therapies.
Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.
Sex, Cell line
View SamplesESCs and NPCs are two setm cell types which rely on expression of the transcription factor Sox2. We profilled gene expression in ESCs and NPCs to correlate genome-wide Sox2 ChIP-Seq data in these cells with expression of putative targets
SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.
No sample metadata fields
View SamplesRationale: Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective: The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results: We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions: Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. Overall design: Comparison of transcriptional programs of primary myocardial tissues sampled from neonatal mice and murine hearts undergoing post-injury regeneration, along with in vitro ESC-differentiated cardiomyocytes
Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration.
No sample metadata fields
View SamplesCortical interneurons display a remarkable diversity in their morphology, physiological properties and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron subtype specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons. Overall design: RNA-seq of FACS sorted PV+ and SST+ cortical interneuronals at P8 of wt and conditional Rbfox1 Kos
Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition.
Cell line
View SamplesTGFbeta/TNFalpha treated spheroid A549 cultures are a model of the epithelial-mesenchymal transition (EMT). These experiments capture the changes in global gene expression that result from cells being induced to undergo EMT (3D control vs 3D treated), but also the differences in gene expression when A549 is grown in spheroid cultures (2D control vs 3D untreated). EMT is efficiently induced only in the spheroid culture model.
Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition.
Cell line
View SamplesIntracellular trafficking is essential for proper cell signaling. In the pancreas, secretory cells rely on trafficking to regulate blood glucose and digestion. Pancreatic disorders reflect defects in function or development, evoking considerable interest in understanding the molecular genetics governing pancreatic organogenesis. Here, we show the transcription factor NFIA regulates trafficking in both the embryonic and adult pancreas, affecting both developmental cell fate decisions and adult physiology. NFIA deletion from pancreatic progenitors led to the development of more acinar cells and ducts and fewer endocrine cells, whereas ectopic NFIA promoted endocrine formation. We found that NFIA's effects on trafficking influence endocrine/exocrine cell fate decisions through regulation of Notch. Adult NFIA-deficient mice develop diabetic phenotypes due to impaired insulin granule trafficking and defects in acinar zymogen secretion. This study shows how a single transcription factor, NFIA, thus exerts profound effects on both embryonic cell fate and adult physiology by regulating vesicle trafficking. Overall design: 2 control and 2 NFIA fl/fl; Pdx1-cre samples, from pooled embryonic litters at E17.5
Pancreatic Cell Fate Determination Relies on Notch Ligand Trafficking by NFIA.
Specimen part, Cell line, Subject
View SamplesThe immense molecular diversity of neurons challenges our ability to deconvolve the relationship between the genetic and the cellular underpinnings of neuropsychiatric disorders. Hypocretin (orexin) containing neurons of the lateral hypothalamus are clearly essential for the normal regulation of sleep and wake behaviors, and have been implicated in feeding, anxiety, depression and reward. However, little is known about the molecular phenotypes of these cells, or the mechanism of their specification. We have generated a Hcrt bacTRAP line for comprehensive translational profiling of these neuronsin vivo. From this profile, we have identified 188 transcripts, as enriched in these neurons, in additions to thousands more moderately enriched or nominally expressed. We validated many of these at the RNA and protein level, including the transcription factor Lhx9. Lhx9 protein is found in a subset of these neurons, and ablation of these gene results in a 30% loss of Hcrt neuron number, and a profound hypersomnolence in mice.This data suggests that Lhx9 may be important for specification of some Hcrt neurons, and the subsets of these neurons may contribute to discrete sleep phenotypes.
Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation.
Sex, Specimen part
View SamplesTimothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. Peripheral blood mononuclear cells (PBMC) obtained either during the pollen season or out of season, from allergic individuals and non-allergic controls were stimulated either with TG extract or a pool of previously identified immunodominant antigenic regions. PBMC from in season allergic subjects exhibit higher IL-5 and IL-10 responses compared to out of season donors. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN? compared to allergic individuals. Strikingly, non-atopic donors exhibited an opposing pattern with decreased immune reactivity in-season. The broad downregulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure but rather react with an active modulation of the responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with allergen exposure and inhibition of responses in non-allergic donors. Magnitude and functionality of T-helper cell responses differ substantially for in season versus out of season in allergic and non-allergic subjects. The results indicate specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programs associated with health and allergic disease. Overall design: 11 allergen-specific T cell RNA samples were analyzed: 5 isolated from PBMC of allergic individuals and 6 from non-allergic individuals (considered as the control group).
Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity.
No sample metadata fields
View Samples