anti-CD4, CD8 and CD40L treated versus control murine CD4+ T cells from micegrafted with hESC derived xenografts.
Tolerance induction to human stem cell transplants with extension to their differentiated progeny.
Specimen part
View Samples5' selective RNA-seq of 96 single cells from human nasal epithelial cells. Cells grown for 33 days at an air liquid interface. RNAseq profiling was performed with N4H4 unique molecular identifiers processed on a Fluidigm C1. Sequencing was performed on a Ion Proton (Life Technologies). Overall design: Single cell from human nasal epithelium. 5' selective RNAseq profiling, 96 cells, unique molecular identifiers, custom library preparation.
A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design.
Specimen part, Subject
View Samples5' selective RNA-seq of 47 Single HEK293 cells RNAseq profiling with N4H4 unique molecular identifiers processed on a Fluidigm C1. Overall design: Single cell HEK293 cell 5' selective RNAseq profiling, 47 cells, unique molecular identifiers, custom library preparation.
A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design.
No sample metadata fields
View SamplesFive libraries from 100 HEK293 cells each were prepared using a Smartseq based custom library preparation approach with unique molecular identifiers. One batch of 2 replicates (A) and one batch of 3 replicates (B) were prepared from different cell cultures. Libraries were sequenced on an Ion Proton Overall design: HEK293 cell (100 cells) 5' selective RNAseq profiling, N4H4 unique molecular identifiers, 2 replicates (A) and 3 replicates (B)
A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design.
No sample metadata fields
View SamplesThe in vitro test battery of the European research consortium ESNATS (novel stem cell-based test systems) has been used to screen for potential human developmental toxicants. As part of this effort, the migration of neural crest (MINC) assay has been used to evaluate chemical effects on neural crest function. It identified some drug-like compounds in addition to known environmental toxicants. The hits included the HSP90 inhibitor geldanamycin, the chemotherapeutic arsenic trioxide, the flame-retardant PBDE-99, the pesticide triadimefon and the histone deacetylase inhibitors valproic acid and trichostatin A. Transcriptome changes triggered by these substances in human neural crest cells were recorded and analysed here to answer three questions: (1) can toxicants be individually identified based on their transcript profile; (2) how can the toxicity pattern reflected by transcript changes be compacted/ dimensionality-reduced for practical regulatory use; (3) how can a reduced set of biomarkers be selected for large-scale follow up? Transcript profiling allowed clear separation of different toxicants and the identification of toxicant types in a blinded test study. We also developed a diagrammatic system to visualize and compare toxicity patterns of a group of chemicals by giving a quantitative overview of altered superordinate biological processes (e.g. activation of KEGG pathways or overrepresentation of gene ontology terms). The transcript data were mined for potential markers of toxicity, and 39 transcripts were selected to either indicate general developmental toxicity or distinguish compounds with different modes-of-action in read-across. In summary, we found inclusion of transcriptome data to largely increase the information from the MINC phenotypic test.
Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration.
Sex, Specimen part
View SamplesIn an effort to identify genes whose expression is regulated by activated PI3K signaling, we performed microarray analysis and subsequent qRT-PCR on an isogenic set of PTEN gene-targeted human cancer cells. Numerous p53 effectors were upregulated following PTEN deletion, including p21, GDF15, PIG3, NOXA, and PLK2. Stable depletion of p53 led to reversion of the gene expression program. Western blots revealed that p53 was stabilized in HCT116 PTEN-/- cells via an Akt1-dependent and p14ARF-independent mechanism. Stable depletion of PTEN in untransformed human fibroblasts and epithelial cells also led to upregulation of p53 and senescent-like growth arrest. Simultaneous depletion of p53 rescued this phenotype, enabling PTEN-depleted cells to continue proliferating. Next, we tested whether oncogenic PIK3CA, like inactivated PTEN, could activate p53. Retroviral expression of oncogenic human PIK3CA in MCF10A cells led to activation of p53 and upregulation of p53-regulated genes. Stable depletion of p53 reversed these PIK3CA-induced expression changes and synergized with oncogenic PIK3CA in inducing anchorage-independent growth. Finally, targeted deletion of an endogenous allele of oncogenic but not wild-type PIK3CA in a human cancer cell line led to a reduction in p53 levels and a decrease in the expression of p53-regulated genes. These studies demonstrate that activation of PI3K signaling by mutations in PTEN or PIK3CA can lead to activation of p53-mediated growth suppression in human cells, indicating that p53 can function as a brake on PIP3-induced mitogenesis during human cancer pathogenesis.
Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA.
No sample metadata fields
View SamplesAbstract: Adult T-cell leukemia/lymphoma (ATL) is an aggressive and fatal disease. We have examined 18 ATL patient samples using Affymetrix HG-U133A2.0 arrays. Using the BRB array program, we identified genes differentially expressed in leukemia cells compared to normal lymphocytes. Several unique genes were identified that were overexpressed in leukemia cells including TNFSF11, RGS13, MAFb, CSPG2, C/EBPalpha and TCF4. 200 of the most highly overexpressed ATL genes were analyzed by the PathwayStudio 4.0 program. ATL leukemia cells were characterized by an increase in genes linked to "central" genes CDC2/cyclin B1, SYK/LYN, PCNA and BIRC5. Because of its potential therapeutic importance, we focused our studies on the regulation and function of BIRC5, whose expression was increased in 13 of 14 leukemia samples. TCF4 reporter assays and transfection of DN-TCF4 demonstrated that TCF4 regulates BIRC5 gene expression. Functionally, transfection of ATL cells wi BIRC5 shRNA decreased BIRC5 exprression and cell viability 80%. Clinical treatment of ATL patients with Zenapax or bortezomib decreased BIRC5 expression and cell viability. These experiments represent the first direct experimental evidence that BIRC5 plays an important role in ATL cell viability and provides important insight into ATL genesis and potential targeted therapies.
Gene expression profiling of ATL patients: compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability.
No sample metadata fields
View SamplesResponse of pancreas cancer cells to treatment with recombinant MMP3
Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma.
Specimen part, Cell line, Treatment
View SamplesSafety sciences and the identification chemical hazard have been seen as one of the most immediate practical applications of human pluripotent stem cell technology. Protocols for the generation of many desirable human cell types have been developed, but optimization of neuronal models for toxicological use has been astonishingly slow, and the wide, clinically- important field of peripheral neurotoxicity is still largely unexplored. Here, a 2-step protocol to generate large lots of identical peripheral human neuronal precursors was characterized and adapted to the measurement of peripheral neurotoxicity. High content imaging allowed an unbiased assessment of cell morphology and viability. The computational quantification of neurite growth as functional parameter highly sensitive to disturbances by toxicants was used as endpoint reflecting specific neurotoxicity. The differentiation of cells towards dorsal root ganglia neurons was tracked in relation to a large background data set based on gene expression microarrays. On this basis, a peripheral neurotoxicity (PeriTox) test was developed as first toxicological assay that harnesses the potential of human pluripotent stem cells to generate cell types/tissues that are not otherwise available for prediction of human systemic organ toxicity. Testing of more than 30 chemicals showed that human neurotoxicants, as well as neurite growth enhancers, were correctly identified. Various classes of chemotherapeutics causing human peripheral neuropathies were identified, while they were missed when tested on human central neurons. The PeriTox-test established here shows the potential of human stem cells for clinically-relevant safety testing of drugs in use and of new emerging candidates.
Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants.
Sex, Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway.
Specimen part
View Samples