Introduction: Infiltration of cancers by T-cells is associated with improved patient survival and response to immune therapies; however, optimal approaches to induce T-cell infiltration of tumors are not known. This study tests the hypothesis that topical treatment of melanoma metastases with the TLR7 agonist imiquimod treatment plus administration of a multipeptide cancer vaccine will improve immune cell infiltration of melanoma metastases. Patients and Methods: Eligible patients were immunized with a vaccine comprised of 12 melanoma peptides and a tetanus toxoid-derived helper peptide, and imiquimod was applied topically to tumors daily. Adverse events (AE; CTCAE v4.03) were recorded and effects on the tumor microenvironment (TME) were evaluated from sequential tumor biopsies. T-cell responses were assessed by IFNgamma ELIspot assay, and T-cell tetramer staining. Patient tumors were evaluated for immune cell infiltration, cytokine and chemokine production, and gene expression. Results and Conclusions: Four eligible patients were enrolled, and administration of imiquimod and vaccination was well tolerated in these patients. Circulating T-cell responses to the vaccine were detected by ex vivo ELIspot assay in 3 of 4 patients. Treatment of metastases with imiquimod induced immune cell infiltration and favorable gene signatures in the patients with circulating T-cell responses. This study supports further study of topical imiquimod combined with vaccines or other immune therapies for the treatment of melanoma. Precis: This clinical trial tested topical application of imiquimod to melanoma metastases combined with a melanoma vaccine. The regimen dramatically upregulated immune rejection gene signatures in melanoma metastases and increased T-cell infiltrate.
Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signatures in the metastases.
Specimen part, Disease, Disease stage
View SamplesAnalysis of tissues of DBA/2 mice fed a standard breeding diet (SBD) and high fat diet (HFD) revealed tissue specific roles in inflammation and disease, and altered communication between tissues. The tissues surveyed incuded adipose tissues (brown, inguinal, mesenteric, retro-peritoneal, subcutaneious and gonadal), muscle and liver.
High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice.
Specimen part, Treatment
View SamplesCRISPR-Cas9 delivery by AAV holds promise for gene therapy but faces critical barriers due to its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multi-functional platform customizable for genome-editing, transcriptional regulation, and other previously impracticable AAV-CRISPR-Cas9 applications. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce detectable cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics Overall design: mRNA-Seq from muscles (9 samples; 3 mice x 3 conditions) and lymph nodes (9 samples; 3 mice x 3 conditions).
A multifunctional AAV-CRISPR-Cas9 and its host response.
Specimen part, Cell line, Subject
View SamplesThe concept of age-dependent host control of cancer development raises the natural question of how these effects manifest across the host tissue/organ types with which a tumor interacts, one important component of which is the aging immune system. To investigate this, changes in the spleen, an immune nexus in the mouse, was examined for its age-dependent interactive influence on the carcinogenesis process. The model is the C57BL/6 male mice (adolescent, young adult, middle-aged, and old or 68, 143, 551 and 736 days old respectively) with and without a syngeneic murine tumor implant. Through global transcriptome analysis, immune-related functions were found to be key regulators in the spleen associated with tumor progression as a function of age with CD2, CD3, CCL19, and CCL5 being the key molecules involved. Surprisingly, other than CCL5, all key factors and immune-related functions were not active in spleens from non-tumor bearing old mice. Our findings of age-dependent tumor-spleen signaling interaction suggest the existence of a global role of the aging host in carcinogenesis. Suggested is a new avenue for therapeutic improvement that capitalizes on the pervasive role of host aging in dictating the course of this disease.
Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThe concept of age-dependent host control of cancer development raises the natural question of how these effects manifest across the host tissue/organ types with which a tumor interacts, one important component of which is the aging immune system. To investigate this, changes in the spleen, an immune nexus in the mouse, was examined for its age-dependent interactive influence on the carcinogenesis process. The model is the C57BL/6 male mice (adolescent, young adult, middle-aged, and old or 68, 143, 551 and 736 days old respectively) with and without a syngeneic murine tumor implant. Through global transcriptome analysis, immune-related functions were found to be key regulators in the spleen associated with tumor progression as a function of age with CD2, CD3, CCL19, and CCL5 being the key molecules involved. Surprisingly, other than CCL5, all key factors and immune-related functions were not active in spleens from non-tumor bearing old mice. Our findings of age-dependent tumor-spleen signaling interaction suggest the existence of a global role of the aging host in carcinogenesis. Suggested is a new avenue for therapeutic improvement that capitalizes on the pervasive role of host aging in dictating the course of this disease.
Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development.
Age, Specimen part, Disease, Disease stage
View SamplesLoss of immune function and an increased incidence of myeloid leukemia are two of the most clinically significant consequences of aging of the hematopoietic system. To better understand the mechanisms underlying hematopoietic aging, we evaluated the cell intrinsic functional and molecular properties of highly purified long-term hematopoietic stem cells (LT-HSCs) from young and old mice. We found that LT-HSC aging was accompanied by cell autonomous changes, including increased stem cell self-renewal, differential capacity to generate committed myeloid and lymphoid progenitors, and diminished lymphoid potential. Expression profiling revealed that LT-HSC aging was accompanied by the systemic down-regulation of genes mediating lymphoid specification and function and up-regulation of genes involved in specifying myeloid fate and function. Moreover, LT-HSCs from old mice expressed elevated levels of many genes involved in leukemic transformation. These data support a model in which age-dependent alterations in gene expression at the stem cell level presage downstream developmental potential and thereby contribute to age-dependent immune decline, and perhaps also to the increased incidence of leukemia in the elderly.
Cell intrinsic alterations underlie hematopoietic stem cell aging.
No sample metadata fields
View SamplesThe link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium.
The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression.
Sex, Specimen part
View SamplesWe report age-related gene expression of Treg cells isolated from injured muscle and spleen. Male C57BL/6 Foxp3-GFP reporter mice were injured intramuscularly with cardiotoxin. Tregs were sorted directly into Trizol from injured muscle and spleen 4 days post-injury. Overall design: Gene expression profiling of muscle and splenic Tregs from 2- vs >6-month old mice (biological duplicate for each).
Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells.
Sex, Age, Subject
View SamplesIt has been known for some time that muscle repair potential becomes increasingly compromised with advancing age, and that this age-related defect is associated with reduced activity of muscle satellite cells and with the presence of chronic, low grade inflammation in the muscle. Working from the hypothesis that a heightened inflammatory tone in aged muscle could contribute to poor regenerative capacity, we developed genetic systems to inducibly alter inflammatory gene expression in satellite cells or muscle fibers by modulation of the activity of nuclear factor B (NF-B), a master transcriptional regulator of inflammation whose activity is upregulated in many cell types and tissues with age. These studies revealed that activation of NF-B activity in muscle fibers, but not in satellite cells, drives muscle dysfunction and that lifelong inhibition of NF-B activity in myofibers preserves muscle regenerative potential with aging via cell-non-autonomous effects on satellite cell function. Further analysis of differential gene expression in muscles with varying NF-B activity identified a secreted phospholipase (PLA2G5) as a myofiber-expressed NF-B-regulated gene that governs muscle regenerative capacity with age. Together, these data suggest a model in which NF-B activation in muscle fibers increases PLA2G5 expression and drives the impairment in regenerative function characteristic of aged muscle. Importantly, inhibition of NF-B function reverses this impairment, suggesting that FDA-approved drugs, like salsalate, a prodrug form of sodium salicylate, may provide new therapeutic avenues for elderly patients with reduced capacity to recover effectively from muscle injury.
Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function.
Age
View SamplesWe report gene expression of Treg cells isolated from injured muscle in IL-33 vs PBS treated mice. Male Foxp3-GFP C57BL/6 reporter (2 months old) mice were injured intramuscularly with cardiotoxin/rIL-33 (0.3 ug/muscle). Tregs were sorted directly into Trizol from injured muscle 4 days post-injury. Overall design: Gene expression profiling of muscle Tregs from IL-33 vs PBS injured mice.
Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells.
Sex, Age, Treatment, Subject
View Samples