This report not only adds a novel mechanism to the current dogma on achieving global shortening of 3''UTRs, but also unveils a novel function of the NMD pathway in establishing tissue-specific transcriptome identity Overall design: We first generated prospermatogonia-specific Upf2 conditional knockout mice (Ddx4-Cre; Upf2 fl/?, hereafter called Ddx4-KO) by crossing Ddx4-Cre13 with Upf2 floxed.
UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts.
No sample metadata fields
View SamplesThe aim of the study was to investigate the role of TGIF1 in MLL-AF9 transformed cells
TGIF1 is a negative regulator of MLL-rearranged acute myeloid leukemia.
Cell line
View SamplesUBL5 is an atypical ubiquitin-like protein, whose function in metazoans remains largely unexplored. We show that UBL5 is required for sister chromatid cohesion maintenance in human cells. UBL5 primarily associates with spliceosomal proteins, and UBL5 depletion decreases pre-mRNA splicing efficiency, leading to globally enhanced intron retention. Defective sister chromatid cohesion is a general consequence of dysfunctional pre-mRNA splicing, resulting from the selective downregulation of the cohesion protection factor Sororin. As the UBL5 yeast orthologue, Hub1, also promotes spliceosome functions, our results show that UBL5 plays an evolutionary conserved role in pre-mRNA splicing, the integrity of which is essential for the fidelity of chromosome segregation. Overall design: Total RNA was extracted from HeLa cells treated with control (CTRL), UBL5 (#57, #58, or #82), or SART1 siRNAs for 48 h and processed for RNA-Seq analysis
UBL5 is essential for pre-mRNA splicing and sister chromatid cohesion in human cells.
No sample metadata fields
View SamplesIn this study, we use a conditional mouse model for Cebpa to investigate the significance of C/EBP in HSCs. The frequency of HSCs is unaltered following deletion of C/EBP, however, upon serial transplantations of either full BM or purified HSCs, the stem cells and stem cell activity is lost. This is not due to increased proliferation, but rather caused by a shift from quiescence to apoptosis with a resultant exhaustion of the stem cell pool. We identify direct C/EBP target genes by combining genome-wide C/EBP ChIP-seq analysis in stem and progenitor cells with gene expression data from HSC with and without C/EBP. Furthermore, we explore the impact of C/EBP on active and repressive histone modifications by doing functional genome-wide ChIP-seq analysis of H3K4Me3 and H3K27Me3 in stem and progenitor cells with and without C/EBP.
C/EBPα is required for long-term self-renewal and lineage priming of hematopoietic stem cells and for the maintenance of epigenetic configurations in multipotent progenitors.
Sex, Specimen part
View SamplesTo understand the biological mechanism of ELL2 in multiple myeloma (MM), we show that the MM risk allele lowers ELL2 expression in CD138+ plasma cells (Pcombined=2.5×10-27; bcombined=-0.24 s.d.), but not in peripheral blood or other tissues. Consistent with this, several variants representing the MM risk allele map to regulatory genomic regions, and three yield reduced transcriptional activity in plasmocytoma cell lines. One of these (rs3777189-C) co-locates with the best-supported lead variants for ELL2 expression and MM risk, and reduces binding of MAFF/G/K family transcription factors. Moreover, further analysis reveals that the MM risk allele associates with upregulation of gene sets related to ribosome biogenesis, and knockout/knockdown and rescue experiments in plasmocytoma cell lines support a cause-effect relationship. Overall design: Reconstitution of ELL2 expression in L363-ELL2-knockout cells
The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression.
Specimen part, Disease, Disease stage, Cell line, Treatment, Subject
View SamplesTo understand the biological mechanism of ELL2 in multiple myeloma (MM), we show that the MM risk allele lowers ELL2 expression in CD138+ plasma cells (Pcombined=2.5×10-27; bcombined=-0.24 s.d.), but not in peripheral blood or other tissues. Consistent with this, several variants representing the MM risk allele map to regulatory genomic regions, and three yield reduced transcriptional activity in plasmocytoma cell lines. One of these (rs3777189-C) co-locates with the best-supported lead variants for ELL2 expression and MM risk, and reduces binding of MAFF/G/K family transcription factors. Moreover, further analysis reveals that the MM risk allele associates with upregulation of gene sets related to ribosome biogenesis, and knockout/knockdown and rescue experiments in plasmocytoma cell lines support a cause-effect relationship. Overall design: knock out ELL2 in L363 cells using CRISPR-Cas9
The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression.
Disease, Disease stage, Cell line, Subject
View SamplesFunctional analysis of ABCB5 in A375 and G3361 melanoma cells, by comparing stably-transfected controls to ABCB5-shRNA-targeted cells.
ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit.
Specimen part, Cell line
View SamplesMelanoma growth is driven by malignant melanoma initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member, ABCB5. ABCB5+ melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE-1 and are associated with CD31-negative vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5+ MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5+ tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced in a VEGFR-1-dependent manner expression of CD144 in ABCB5+ subpopulations that constitutively expressed VEGFR-1, but not in ABCB5- bulk populations that were predominantly VEGFR-1-negative. In vivo, melanomaspecific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5+ VM morphology and inhibited ABCB5+ VM-associated production of the secreted melanoma mitogen, laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by >90%). Our results demonstrate that VEGFR-1 function in MMIC regulates VM and associated laminin production, and show that this function represents one mechanism through which MMIC promote tumor growth.
VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth.
Specimen part
View SamplesThe aim of this study was to determine how gene expression is changed after arsenite-induced malignant transformation of prostate epithelial cells.
Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation.
Specimen part, Cell line, Treatment
View SamplesExpression profiling of sheep born to Australian industry sires with high and low genetic merit (Estimated Breeding Values or EBVs) for eye muscle depth (EMD). Progeny (40) from six Poll Dorset sires representing well defined extremes of EBVs for Eye Muscle Depth (low EBV EMD and high EBV EMD) were selected for analysis. The six sires were Australian industry sires with three sires representative of low EBV EMD and three representing high EBV EMD.
An Always Correlated gene expression landscape for ovine skeletal muscle, lessons learnt from comparison with an "equivalent" bovine landscape.
No sample metadata fields
View Samples