Cyclin D1b is a splice variant of the cell cycle regulator Cyclin D1 and is known to harbor divergent and highly oncogenic functions in human disease. While Cyclin D1b is induced during disease progression in many cancer types, the mechanisms underlying Cyclin D1b function remain poorly understood. Herein, models of human disease were utilized to resolve the downstream pathways requisite for the pro-tumorigenic functions of Cyclin D1b. Specifically, it was shown that Cyclin D1b modulates the expression of a large transcriptional network that cooperates with AR signaling to enhance tumor cell growth and invasive potential. Notably, Cyclin D1b promoted AR-dependent activation of genes associated with metastatic phenotypes. Further exploration determined that transcriptional induction of SNAI2 (Slug) was essential for Cyclin D1b- mediated proliferative and invasive properties, implicating Slug as a critical driver of disease progression. Importantly, Cyclin D1b expression highly correlated with that of Slug in clinical samples of advanced disease. Further, in vivo analyses provided strong evidence that Slug enhances both tumor growth and homing to distal soft tissues. Collectively, these findings reveal the underpinning mechanisms behind the pro-tumorigenic functions of Cyclin D1b, and demonstrate that the convergence of the Cyclin D1b-AR and Slug pathways results in the activation of processes critical for the promotion of lethal tumor phenotypes.
Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes.
Specimen part, Cell line
View SamplesEvaluation of the genome wide impact of PARPi gene expression programs
PARP-1 regulates DNA repair factor availability.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.
Specimen part, Cell line, Time
View SamplesAltered patterns of transcription factor (TF) binding are now accepted as a hallmark of many aggressive cancers including prostate and breast cancers1,2. This implies that underlying global changes in chromatin accessibility may drive cancer progression, as previously hypothesized3-5. In addition there are epigenetic readers such as bromodomain containing protein 4 (BRD4), which have been shown to associate with these TFs6-8 and also to contribute to aggressive cancers of many types8,9 including prostate cancer (PC)6,10. Here we show for the first time that formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq) applied to human prostate tumors tissue can define castrate-resistant prostate cancer (CRPC) and can be used to inform the discovery of gene-level classifiers for therapy. In addition, we show that the androgen receptor (AR) overexpression alone is a primary driver for chromatin relaxation and that this effect can be reversed using bromodomain inhibitors. We also report that bromodomain-containing proteins (BRDs) are overexpressed in advanced CRPCs and that ATAD2 and BRD2 have prognostic value. In conclusion, this is the first study demonstrating a major impact of BRDs on chromatin accessibility in CRPC in patient samples. Consequently, targeting bromodomains provides a compelling rational for combination therapy in which BRD-mediated TF binding is enhanced or modified as cancer progresses.
Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.
Time
View SamplesCDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptor (ER)-positive breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after exposure to palbociclib in ER-positive breast cancer cells. Increased CDK6 in resistant cells was dependent on TGF-ß pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediated transfer of the resistance phenotype between neighboring cell populations. We confirmed these data in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating clinical relevance of this mechanism. Additionally, the CDK4/6 inhibitor resistance phenotype can be reversed in vitro and in vivo by a prolonged drug holiday. Overall design: To analyse the binding targets of miR-432-5p we performed a mRNA pulldown using a synthetic biotin laballed miR-432-5p. RNAseq was performed to identify the captured mRNA.
MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance.
Specimen part, Subject
View SamplesIslet amyloid polypeptide (IAPP) is the main component of amyloid deposits in type 2 diabetic patients. Cells overexpressing the human transcript of IAPP (hIAPP) present defects in insulin secretion.
Inhibition of BACE2 counteracts hIAPP-induced insulin secretory defects in pancreatic β-cells.
No sample metadata fields
View SamplesWe have investigated the effect of RRP6 depletion on the transcriptome of S2 cells using Illumina deep RNA sequencing. We have also carried out Illumina ChIP-seq analysis of RRP6 genome occupancy in control S2 cells (GFP-KD) and in cells depleted of SU(VAR)3-9. Overall design: 8 samples total; 4 RNA-Seq samples (1 RRP6-KD and 1 GFP-KD, 2 biological replicates each); and 4 ChIP-Seq samples (RRP6 IP in GFP-KD and in Su(var)3-9-KD conditions; plus their respective Input samples).
An Interaction between RRP6 and SU(VAR)3-9 Targets RRP6 to Heterochromatin and Contributes to Heterochromatin Maintenance in Drosophila melanogaster.
Subject
View SamplesThyroid hormone is crucial for normal brain development. Thyroid hormone transporters control thyroid hormone homeostatis in brain. Mutations in the thyroid hormone transporter MCT8 result in a complex endocrine and neurological phenotype.
Transcriptional profiling of fibroblasts from patients with mutations in MCT8 and comparative analysis with the human brain transcriptome.
Specimen part
View SamplesWe performed RNA-Seq transcriptome profiling on 29 immune cell types consituting peripheral blood mononuclear cells (PBMCs) sorted from 4 Singaporean-Chinese individuals (S4 cohort). We also performed RNA-Seq and microarray transcriptome profiling of PBMCs from an extended cohort of 13 individuals (S13 cohort). The data was used first to characterize the transcriptomic signatures and relationships among the 29 immune cell types. Then we explored the difference in mRNA composition in terms of transcripts proportions and abundance. Lastly, we performed deep deconvolution for both microarray and RNA-Seq technologies. Overall design: Total RNA of 29 immune cell types (from 4 individuals) and peripheral blood mononuclear cells (PBMCs, from 13 individuals) was extracted for gene expression profiling. The 13 PBMCs samples were processed with both microarray and RNA-Seq platforms.
RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types.
Sex, Specimen part, Disease, Subject
View SamplesContext: Despite the well-recognized clinical features due to insufficient or excessive thyroid hormone (TH) levels in humans, it is largely unknown which genes are regulated by TH in human tissues. objective: To study the effect of TH on human gene expression profiles in whole blood, mainly consisting of TRa-expressing cells. Methods: We performed next-generation RNA sequencing on whole blood samples from 8 athyroid patients (4 females) on and after 4 weeks off levothyroxine replacement. Gene expression changes were analyzed through paired differential expression analysis and confirmed in a validation cohort. Weighted gene co-expression network analysis (WGCNA) was applied to identify thyroid state-related networks. Results: We detected 486 differentially expressed (DE) genes (fold-change above 1.5; multiple testing corrected P-value <0.05), of which 76 % were positively and 24 % were negatively regulated. Gene ontology (GO) enrichment analysis revealed that 3 biological processes were significantly overrepresented of which the process translational elongation showed the highest fold enrichment (7.3 fold, P=1.8 x 10-6). Comparative transcriptome analysis revealed significant overlap with DE-genes in muscle samples upon different thyroid state (1.7-fold enrichment; P=0.02). WGCNA analysis independently identified various gene clusters that correlated with thyroid state. Further GO-analysis suggested that thyroid state regulates platelet function. Conclusions: Changes in thyroid state regulate numerous genes in human whole blood, predominantly TRa-expressing leukocytes. In addition, TH may regulate gene expression in platelets. Whole blood samples might potentially be used as a proxy for other TRa-expressing tissues in humans. Overall design: Transcriptome profiling (RNA-Seq) of 8 thyroidectomized human whole blood samples, sequenced first in hypothyroid state and after levothyroxine supplementation sequenced in a hypothyroid (mild thyreotoxic state) state on a Illumina HiSeq 2500 system.
Thyroid State Regulates Gene Expression in Human Whole Blood.
Specimen part, Subject
View Samples