Transcriptome of S. cerevisiae in shifts between glucose and maltose media with different re-growth conditions Overall design: Cells are pregrown in maltose, then grown for different durations in glucose and then washed back to maltose
A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast.
Subject
View SamplesSomatic ribosomal protein defects have recently been described in cancer, yet their impact on cellular transcription and translation remain poorly understood. Here we integrated mRNA sequencing, ribosome footprinting, polysomal RNA seq and quantitative mass spectrometry datasets obtained from an isogenic mouse lymphoid cell model in order to study the T-cell acute lymphoblastic leukemia (T-ALL) associated R98S mutation in ribosomal protein L10 (RPL10 R98S). RPL10 R98S induced changes in protein levels were to a much larger extent caused by transcriptional then translational changes and RPL10 R98S cells showed a gene signature corresponding to deregulation of hematopoietic transcription factors. Phosphoserine phosphatase (PSPH), a key enzyme in serine biosynthesis, displayed elevated transcription and translation and was one of the proteins showing the strongest upregulation in RPL10 R98S cells. Increased Psph protein levels were confirmed in RPL10 R98S engineered JURKAT cells and in hematopoietic cell cultures derived from Rpl10 R98S knock-in mice. Moreover, elevated serine and glycine biosynthesis in RPL10 R98S cells was supported by metabolic flux analyses. Analysis of PSPH expression levels in T-ALL patient samples revealed that PSPH upregulation is a generalized phenomenon in this disease, associated with elevated circulating serine and glycine levels. Addition of serine and glycine enhanced survival of stromal and myeloid cells, suggesting supportive effects on the hematopoietic niche. Finally, reduction of PSPH expression levels in T-ALL cell lines suppressed their in vitro proliferation and their capacity to expand in T-ALL xenograft models. In conclusion, transcriptome, translatome and proteome analysis of the RPL10 R98S mutation identified RPL10 R98S driven induction of cellular serine biosynthesis. Whereas serine metabolism has been implicated in cancer via PHGDH amplification, this is the first report supporting dependence of ALL cells on the serine biosynthesis enzyme PSPH. Overall design: 3 biological replicates for each condition (RPL10 R98S, RPL10 WT)
Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells.
Specimen part, Subject
View SamplesHigh-throughput sequencing of primary cutaneous follicle center lymphoma (PCFCL), primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT) and in vitro activated peripheral blood B-cells. We performed high-throughput sequencing analysis on frozen tumor biopsies from 19 cases of PCFCL and PCLBCL-LT to establish microRNA profiles. Cluster analysis of the complete microRNome could not distinguish between the two subtypes, but 16 single microRNAs were found to be differentially expressed. Overall design: Lymphoma miRNA profiles of were generated by deep sequencing, using Illumina Genome Analyzer II.
MicroRNA profiling of primary cutaneous large B-cell lymphomas.
No sample metadata fields
View SamplesInteractions between Chronic Lymphocytic Leukemia B-cells (CLL B-cells) and the microenvironment (ME) play a major function in the physiopathology of CLL. Extracellular vesicles (EVs) (composed of exosomes and microparticles) have been shown to play an important role in cell communication. EVs, purified by ultracentrifugation from bone marrow mesenchymal stromal cells (BM-MSC) culture, were added to CLL B-cells. Microarray study highlighted 805 differentially expressed genes between CLL-B-cells cultured with and without EVs. Of these, CCL3/4, EGR1/2/3, MYC (involved in BCR pathway) were increased while pro-apoptotic genes like HRK were decreased. We showed for the first time the potential of EVs alone to induce gene expression modifications in CLL B-cell, notably in BCR and apoptosis pathways. We concluded that a substantial part of communication between CLL B-cells and BM-ME is mediated through EV.
Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications.
Specimen part, Subject
View SamplesDNA methylation is a dynamic epigenetic modification that plays a key role in various cellular processes. Proteins that bind to DNA depending on its methylation status are thought to play an important role in DNA methylation-mediated gene expression. Using a variety of genomics and proteomics approaches, we identified ZBTB2 as a novel reader of unmethylated DNA. ZBTB2, which forms a complex with ZBTB25 and ZNF639, preferentially binds at CpG island promoters in mouse embryonic stem cells, from where it regulates genes that are involved in the exit from pluripotency. Binding of ZBTB2 to target genes is mostly associated with gene activation. Furthermore, ZBTB2 is intricately interwoven with DNA methylation, as we found not only that its binding to DNA is methylation-sensitive, but also that ZBTB2 regulates the turnover of methylated DNA. Summarising, we propose that ZBTB2 is a DNA methylation-sensitive transcription factor that is involved in cellular differentiation. Overall design: RNA-seq samples of wildtype ESCs and Zbtb2 KO ESCs
ZBTB2 reads unmethylated CpG island promoters and regulates embryonic stem cell differentiation.
Specimen part, Subject
View SamplesDiclofenac is a widely used analgesic drug that can cause serious adverse drug reactions. We used Saccharomyces cerevisiae as model eukaryote to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Although most yeast cells died during initial diclofenac treatment, some survived and started growing again. Microarray analysis of the adapted cells identified three major processes involved in diclofenac detoxification and tolerance. Especially pleiotropic drug resistance genes and genes under control of Rlm1p, a transcription factor in the protein kinase C (PKC) pathway, were upregulated in diclofenac-adapted cells. Genes involved in ribosome biogenesis and rRNA processing were downregulated, as well as zinc-responsive genes.
Involvement of the pleiotropic drug resistance response, protein kinase C signaling, and altered zinc homeostasis in resistance of Saccharomyces cerevisiae to diclofenac.
Treatment
View SamplesMicroarrays were used to analyze the gene expression in endoscopic-derived intestinal mucosal biopsies from patients with inflammatory bowel diseas (IBD) and controls
Genetic and Transcriptomic Bases of Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease.
Specimen part, Disease
View SamplesMycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is a malignancy of mature, skin-homing T cells. Szary syndrome (Sz) is often considered to represent a leukemic phase of MF. In this study the pattern of numerical chromosomal alterations in MF tumor samples was defined using array-based CGH; simultaneously gene expression was analyzed using microarrays. Highly recurrent chromosomal alterations in MF include copy number gain of 7q36, 7q21-7q22 and loss of 5q13 and 9p21. This pattern characteristic of MF differs markedly from chromosomal alterations observed in Sz. Integration of data from array-based CGH and gene expression analysis yielded several candidate genes with potential relevance in the pathogenesis of MF. We confirmed that the FASTK and SKAP1 genes, residing in loci with recurrent gain, demonstrated increased expression. The RB1 and DLEU1 tumor suppressor genes showed diminished expression associated with loss. In addition, it was found that presence of chromosomal alterations on 9p21, 8q24 and 1q21-1q22 was associated with poor prognosis in patients with MF. This study provides novel insight into genetic alterations underlying MF. Furthermore, our analysis uncovered genomic differences between MF and Sz, which suggest that the molecular pathogenesis and therefore therapeutic requirements of these CTCLs may be distinct.
Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome.
Specimen part
View SamplesThe transcriptional coactivator ANGUSTIFOLIA 3 (AN3) stimulates cell proliferation during Arabidopsis leaf development, but the molecular mechanism is largely unknown. We show here that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR 2 (CRF2), CONSTANS-LIKE 5 (COL5), HECATE 1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED (SYD). Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoter of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.
ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.
Specimen part, Time
View SamplesHeterochromatic non-coding RNAs induce breast tumor formation in mice by interacting with BRCA1-associated proteins functioning in the DNA damage response. Overall design: mouse tumor mRNA profiles using ribosomal mRNA depletion
Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer.
Specimen part, Cell line, Subject
View Samples