The life cycle of human papillomaviruses (HPV) is strictly linked to the differentiation of their natural host cells. The HPV E6 and E7 oncoproteins can delay the normal differentiation program of keratinocytes, however, the exact mechanisms responsible for this have not yet been identified. The goal of this study was to investigate the effects of HPV16 oncoproteins on the expression of genes involved in keratinocyte differentiation. Primary human keratinocytes transduced by LXSN (control) retroviruses or virus vectors expressing HPV16 E6, E7 or E6/E7 genes were subjected to gene expression profiling. The results of microarray analysis showed that HPV 16 E6 and E7 have the capacity to down-regulate the expression of several genes involved in keratinocyte differentiation. Quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to confirm microarray data. To investigate the effects of the HPV oncoproteins on the promoters of selected keratinocyte differentiation genes, luciferase reporter assays were performed. Our results suggest that the HPV 16 E6 and/or E7 oncogenes are able to down-regulate the expression of several genes involved in keratinocyte differentiation, at least partially by down-regulating their promoter activity. This activity of the HPV oncoproteins may have a role in the productive virus life cycle, and also in virus induced carcinogenesis.
Transcriptional regulation of genes involved in keratinocyte differentiation by human papillomavirus 16 oncoproteins.
Specimen part
View SamplesSomatic ribosomal protein defects have recently been described in cancer, yet their impact on cellular transcription and translation remain poorly understood. Here we integrated mRNA sequencing, ribosome footprinting, polysomal RNA seq and quantitative mass spectrometry datasets obtained from an isogenic mouse lymphoid cell model in order to study the T-cell acute lymphoblastic leukemia (T-ALL) associated R98S mutation in ribosomal protein L10 (RPL10 R98S). RPL10 R98S induced changes in protein levels were to a much larger extent caused by transcriptional then translational changes and RPL10 R98S cells showed a gene signature corresponding to deregulation of hematopoietic transcription factors. Phosphoserine phosphatase (PSPH), a key enzyme in serine biosynthesis, displayed elevated transcription and translation and was one of the proteins showing the strongest upregulation in RPL10 R98S cells. Increased Psph protein levels were confirmed in RPL10 R98S engineered JURKAT cells and in hematopoietic cell cultures derived from Rpl10 R98S knock-in mice. Moreover, elevated serine and glycine biosynthesis in RPL10 R98S cells was supported by metabolic flux analyses. Analysis of PSPH expression levels in T-ALL patient samples revealed that PSPH upregulation is a generalized phenomenon in this disease, associated with elevated circulating serine and glycine levels. Addition of serine and glycine enhanced survival of stromal and myeloid cells, suggesting supportive effects on the hematopoietic niche. Finally, reduction of PSPH expression levels in T-ALL cell lines suppressed their in vitro proliferation and their capacity to expand in T-ALL xenograft models. In conclusion, transcriptome, translatome and proteome analysis of the RPL10 R98S mutation identified RPL10 R98S driven induction of cellular serine biosynthesis. Whereas serine metabolism has been implicated in cancer via PHGDH amplification, this is the first report supporting dependence of ALL cells on the serine biosynthesis enzyme PSPH. Overall design: 3 biological replicates for each condition (RPL10 R98S, RPL10 WT)
Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells.
Specimen part, Subject
View SamplesIn vitro differentiation of human stem cells can produce pancreatic beta cells, the insulin-secreting cell type whose loss underlies Type 1 Diabetes. As a step towards mastery of this process, we report on transcriptional profiling of >100,000 individual cells sampled during in vitro beta cell differentiation and describe the cells that emerge. We resolve populations corresponding to beta cells, alpha-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population resembling enterochromaffin cells. We show that the beta and alpha-like cells are stable for weeks in culture without exogenous growth factors and that gene expression changes associated with in vivo beta cell maturation are recapitulated in vitro. We demonstrate that stem-cell derived enterochromaffin cells can synthesize and secrete serotonin in vitro. To remove exocrine cells, we characterize a scalable re-aggregation technique that efficiently selects endocrine cells. Finally, we use a high-resolution sequencing time course to characterize gene expression dynamics during human pancreatic endocrine induction from which we develop a lineage model of in vitro beta cell differentiation. This study provides a deeper perspective on the current state of human stem cell differentiation and is a jumping-off point for future endeavors in in vitro differentiation of pancreatic islet cells and their application in regenerative medicine. Overall design: Single-cell mRNA sequencing of pluripotent stem cells differentiating in vitro towards pancreatic beta cells. The data & metadata match the initial submission of the manuscript, not the final version.
Charting cellular identity during human in vitro β-cell differentiation.
Specimen part, Subject
View SamplesAbstract from Vermillion et al: During vertebrate development, progenitor cells give rise to tissues and organs through a complex choreography that commences at gastrulation. A hallmark event of gastrulation is the formation of the primitive streak, a linear assembly of cells along the anterior-posterior (AP) axis of the developing organism. To examine the primitive streak at a single-cell resolution, we measured the transcriptomes of individual chick cells from the streak or the surrounding tissue (the rest of the area pellucida) in Hamburger-Hamilton stage 4 embryos. The single-cell transcriptomes were then ordered by the statistical method Wave-Crest to deduce both the relative position along the AP axis and the prospective lineage of single cells. The ordered transcriptomes reveal intricate patterns of gene expression along the primitive streak. Overall design: Examination of single-cells of stage 4 chicken embryos.
Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes.
Specimen part, Subject
View SamplesEpstein-Barr virus (EBV) is a ubiquitous gammaherpes virus that establishes a life-long latency in over 90% of the world's population. Epstein Barr Nuclear Antigen 1, EBNA1, is the only viral protein consistently detected in all viral latency programs, as well as in all forms of EBV-associated malignancies. EBNA1 plays critical roles in the viral life cycle by fostering the replication and maintenance of the extrachromosomal viral genome as well as enhancing transcription from multiple viral promoters.
Identifying sites bound by Epstein-Barr virus nuclear antigen 1 (EBNA1) in the human genome: defining a position-weighted matrix to predict sites bound by EBNA1 in viral genomes.
No sample metadata fields
View SamplesWe examined the transcriptomes of murine "expandable hemangioblasts" (eHBs) and their blood and endothelial progeny, comparing them to the transcriptomes of murine embryonic stem (ES) cells, primary murine endothelial cells isolated from E11.5 yolk sacs or embryos, and E14.5 fetal liver hematopoietic stem cells. Overall design: Total RNAs were purified from lysates of cultured or primary cells, reverse transcribed, and sequenced on an Illumina HiSeq 2500.
An expandable, inducible hemangioblast state regulated by fibroblast growth factor.
No sample metadata fields
View SamplesEffects of loss-of-function of AtMIKC* MADS-box genes on the mature Arabidopsis pollen transcriptome.
MADS-complexes regulate transcriptome dynamics during pollen maturation.
Age, Specimen part
View SamplesHandedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.
Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys.
Sex, Age, Specimen part
View SamplesEpstein-Barr virus (EBV) has evolved exquisite controls over its host cells, human B lymphocytes, not only directing these cells during latency to proliferate and thereby expand the pool of infected cells, but also to survive and thereby persist for the lifetime of the infected individual. Although these activities ensure the virus is successful, they also make the virus oncogenic, particularly when infected people are immunosuppressed. Here we show, strikingly, that one set of EBV’s miRNAs both sustain BL (Burkitt’s lymphoma) cells in the absence of other viral oncogenes and promote the transformation of primary B lymphocytes. Burkitt’s Lymphoma cells were engineered to lose EBV and found to die by apoptosis and could be rescued by constitutively expressing viral miRNAs in them. Two of these EBV miRNAs were found to target Caspase 3 to inhibit apoptosis at physiological concentrations. Overall design: Examination of RISC associated transcripts under 4 conditions in Sav S1-1 cells
Epstein-Barr virus maintains lymphomas via its miRNAs.
Cell line, Treatment, Subject
View SamplesWhile the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less understood. By dissecting border regions and combining single-cell RNA sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny and subsets displayed distinct self-renewal capacities upon depletion and repopulation. Single-cell and fate-mapping analysis both suggested there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in the healthy and diseased brain. Overall design: sample of WT choroid plexus, sample of WT dura mater, sample of WT enriched SDM, sample of WT whole brain, sample of 9 months old APP/PS1 mice, sample of 16 months old APP/PS1 mice, sample of 16 months old WT mice, sample of Irf8 KO whole brain, sample of Irf8 KO choroid plexus, sample of Irf8 WT whole brain, sample of Irf8 WT choroid plexus, sample of dura mater with standard protocol and with ActD protocol, sample of choroid plexus with standard protocol and ActD protocol.
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.
Specimen part, Cell line, Subject
View Samples