Somatic ribosomal protein defects have recently been described in cancer, yet their impact on cellular transcription and translation remain poorly understood. Here we integrated mRNA sequencing, ribosome footprinting, polysomal RNA seq and quantitative mass spectrometry datasets obtained from an isogenic mouse lymphoid cell model in order to study the T-cell acute lymphoblastic leukemia (T-ALL) associated R98S mutation in ribosomal protein L10 (RPL10 R98S). RPL10 R98S induced changes in protein levels were to a much larger extent caused by transcriptional then translational changes and RPL10 R98S cells showed a gene signature corresponding to deregulation of hematopoietic transcription factors. Phosphoserine phosphatase (PSPH), a key enzyme in serine biosynthesis, displayed elevated transcription and translation and was one of the proteins showing the strongest upregulation in RPL10 R98S cells. Increased Psph protein levels were confirmed in RPL10 R98S engineered JURKAT cells and in hematopoietic cell cultures derived from Rpl10 R98S knock-in mice. Moreover, elevated serine and glycine biosynthesis in RPL10 R98S cells was supported by metabolic flux analyses. Analysis of PSPH expression levels in T-ALL patient samples revealed that PSPH upregulation is a generalized phenomenon in this disease, associated with elevated circulating serine and glycine levels. Addition of serine and glycine enhanced survival of stromal and myeloid cells, suggesting supportive effects on the hematopoietic niche. Finally, reduction of PSPH expression levels in T-ALL cell lines suppressed their in vitro proliferation and their capacity to expand in T-ALL xenograft models. In conclusion, transcriptome, translatome and proteome analysis of the RPL10 R98S mutation identified RPL10 R98S driven induction of cellular serine biosynthesis. Whereas serine metabolism has been implicated in cancer via PHGDH amplification, this is the first report supporting dependence of ALL cells on the serine biosynthesis enzyme PSPH. Overall design: 3 biological replicates for each condition (RPL10 R98S, RPL10 WT)
Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells.
Specimen part, Subject
View SamplesHuman regulatory T cells (TR) cells have potential for the treatment of immune mediated diseases, such as graft versus host disease, but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimulation with a superagonistic anti-CD28 antibody (clone 9D4) and IL-2 partially reversed the proliferative defect, and this correlated with reversal of the defective calcium mobilization in these cells. Dendritic cells were effective at promoting TR cell proliferation, and under these conditions the proliferative capacity of TR cells was comparable to conventional CD4 lymphocytes. Blocking TGF-beta activity abrogated IL-10 expression from these cells, while addition of TGF-beta resulted in IL-10 production. These data demonstrate the ability of dendritic cells to provide proper costimulation to overcome the anergic phenotype of TR cells. In addition, these data demonstrate for the first time that TGF-beta is critical to enable TR cells to express IL-10.
Requirements for growth and IL-10 expression of highly purified human T regulatory cells.
Specimen part
View SamplesMacrophage expressed gene 1 (MPEG1) encodes an evolutionary conserved protein with a predicted Membrane Attack Complex/Perforin domain associated with host defence against invading pathogens. In vertebrates, MPEG1 is an integral membrane protein of macrophages, but how it contributes to the macrophage defence mechanisms remains unknown. Zebrafish have three copies of MPEG1, two of which (mpeg1 and mpeg1.2) are expressed in macrophages whereas the third could be a pseudogene. The mpeg1 and mpeg1.2 genes show differential regulation during infection of zebrafish embryos with the bacterial pathogens, Mycobacterium marinum and Salmonella typhimurium. While mpeg1 is down-regulated during infection with both pathogens, mpeg1.2 is infection inducible. Up-regulation of mpeg1.2 is partially dependent on the presence of functional Mpeg1, and requires the Toll-like receptor adaptor molecule MyD88 and transcription factor NF?B. Knockdown of mpeg1 alters the immune response to M. marinum infection and results in increased bacterial burden. In S. typhimurium infection, both mpeg1 and mpeg1.2 knockdown increase bacterial burdens, but mpeg1 morphants show an increased survival rate. The combined results of these two in vivo infection models support the anti-bacterial function of the Mpeg1 family and indicate that the intricate cross-regulation of the two mpeg1 copies aids the zebrafish host in combatting infection Overall design: Embryos were injected at the one cell stage with a morpholino targeting mpeg1, or with the standard control morpholino from GeneTools, or with a morpholino targeting ptpn6 (Kanwal et al., 2013, J. Immunol 190:1631-45) for comparison. Subsequently, at 24 hours post fertilisation (hpf) the morphants and their controls were manually dechorionated at 24 hpf and at 28 hpf they were infected by injecting 200 colony forming units of M. marinum Mma20 into the caudal vein, or mock-injected with PBS/2%PVP. After injections embryos were transferred into fresh egg water containing 0.003% 1-phenyl-2-thiourea (Sigma-Aldrich) to prevent melanisation and incubated for 4 days at 28°C. After the incubation period, infected and uninfected morphants, mutants and their controls were imaged and groups of 30 embryos were snap-frozen in liquid nitrogen and RNA was isolated for Illumina RNAseq analysis.
Macrophage-expressed perforins mpeg1 and mpeg1.2 have an anti-bacterial function in zebrafish.
No sample metadata fields
View SamplesMyD88 is an adaptor protein in Toll-like receptor and interleukin 1 receptor mediated signaling pathways that plays an essential role in activation of immune responses following pathogen recognition. We investigate that role in the zebrafish embryo model by using a zebrafish mutant line that contains a premature stop condon in the gene encoding MyD88, leading to a truncated protein that lacks domains important for its normal function. We infected these MyD88 mutants and wildtype individuals with Mycobacterium marinum to compare the resulting immune response by transcriptome profiling on total RNA isolated from single embryos. Autophagy regulator dram1 was identified as one of the MyD88-dependent genes. Overall design: This RNAseq analysis was used to determine the effect of a truncation of the MyD88 protein on the innate immune response of zebrafish embryos during infection with Mycobacterium marinum. Myd88 mutant and wild type embryos were derived by incrossing homozygous myd88 mutant parents (allele hu3568, van der Vaart et al., 2013, Disease models & mechanisms 6, 841-854) or their wildtype siblings. RNA was isolated from pools of 20 embryos at 4 days post infection (4 dpi). The following treatment groups were used: homozygous mutants mock-injected with PBS/2%PVP 4 dpi, (2) wildtype siblings mock-injected with PBS/2%PVP 4dpi, (3) M. marinum-infected homozygous mutants 4dpi, (4) M. marinum-infected wildtype siblings 4dpi. Embryos were grown at 28.5–30°C in egg water and manually dechorionated at 24 hours post fertilization (hpf). Subsequently, embryos were infected at 28 hpf by micro-injecting 200 colony forming units (CFU) of Mycobacterium marinum Mma20 bacteria into the caudal vein, or were mock-injected with buffer (PBS/2%PVP) as a control. After injections embryos were transferred into fresh egg water and incubated for 4 days at 28°C. After the incubation period, single embryos were snap-frozen in liquid nitrogen and RNA was isolated for RNAseq analysis.
Macrophage-expressed perforins mpeg1 and mpeg1.2 have an anti-bacterial function in zebrafish.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and non-diabetic cystic fibrosis patients possessing Pseudomonas aeruginosa pulmonary tract infection.
Identification of molecular signatures of cystic fibrosis disease status with plasma-based functional genomics.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesBackground: NK cells during chronic viral infection have been well studied over the last decade. We performed an unbiased next-generation RNA-sequencing approach to identify commonalities or differences of the effect of HIV, HCV and HBV viremia on NK cell transcriptomes. Methods: Using cell sorting, we obtained CD3-CD56+ NK cells from blood of 6 HIV, 11 HCV, and 32 HBV infected and untreated patients. Library preparation and sequencing were done using Illumina mRNA-Seq Sample Prep Kit and the HiSeq 2000, HiSeq2500 or NextSeq 500, and further analysis by an in-house analytic pipeline. Results: In NK cells from HIV, HCV and HBV patients, transcriptome analysis identified 272, 53, and 56 differentially expressed genes, respectively (fold change >1.5, q-value 0.2). Interferon stimulated genes were induced in NK cells from HIV/HCV patients, but not during HBV infection. HIV viremia downregulated ribosome assembly genes in NK cells. In HBV, viral load and ALT variation had little effect on genes related to NK effector function. Conclusion: We compare, for the first time, NK cell transcripts of viremic HIV, HCV and HBV patients. We clearly demonstrate distinctive NK cell gene signatures in 3 different populations, suggestive for a different degree of functional alterations of the NK cell compartment as compared to healthy individuals. Overall design: We analyzed NK cell transcripts collected from the blood of well-characterized chronic HBV patients (n=32), chronic HCV patients (n=8), and HIV patients (n=6). Differential gene expression analysis, global module analysis, and unsupervised clustering analysis were performed by employing RNA-sequencing on blood NK cell transcriptomes.
Persistent Replication of HIV, Hepatitis C Virus (HCV), and HBV Results in Distinct Gene Expression Profiles by Human NK Cells.
Sex, Specimen part, Disease, Subject
View Samples