GENES ASSOCIATED WITH THE CELL CYCLE, LINEAGE COMMITMENT AND IMMUNOMODULATORY POTENTIAL DISCRIMINATE HUMAN POSTNATAL STEM CELLS OF DIFFERENT ORIGIN.
Functional differences between mesenchymal stem cell populations are reflected by their transcriptome.
No sample metadata fields
View SamplesA deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) leads to chronic lung disease. However, the molecular mechanisms are not well understood and therapies that can help all patients remain elusive. CF is associated with abnormalities in fatty acids, ceramides and cholesterol, therefore we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array and RNAseq analyses. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and long- to very long- chain ceramide species (LCC/VLCC). The anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and apparent oxidative stress, confirming the CFTR dependence of lipid ratios. RNA sequencing and protein array analysis revealed higher expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions. Treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, Orkambi and Trikafta, did not suppress the inflammatory phenotype. These results suggest that anti-inflammatory therapies may provide additional benefit for CF patients taking CFTR modulator drugs. Overall design: Here we report analysis of nine samples, three of Cf patient (BCF000174), homozygous for F508del CFTR, compared to two non-CF in triplicate each (P21, P11, ErasmusMC, Rotterdam, compared pairwise)
CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells.
Specimen part, Disease, Disease stage, Subject
View SamplesExpression profiles of anti-TNF responders were compared to profiles of anti-TNF non-responders in order to identify an expression signature for anti-TNF response
Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis.
Specimen part, Disease, Disease stage, Treatment
View SamplesExpression analysis of migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow
Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration.
Specimen part
View SamplesP6 ID4-EGFP+ undifferentiated spermatogonia, including those stained robustly (high) or weakly (low) for TSPAN8 were isolated by FACS. Overall design: Three replicate preparations of each population were used for independent RNA-seq using SMART-seq v4, Nextera XT libraries, Hiseq2500 sequencing, and TopHat/Bowtie/Cufflinks analyses.
TSPAN8 Expression Distinguishes Spermatogonial Stem Cells in the Prepubertal Mouse Testis.
Cell line, Subject
View SamplesLiver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment.
Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide.
No sample metadata fields
View SamplesTRF2 is a paralogue of TATA-box binding protein (TBP) with highest expression in testis. Although Trf2 inactivation in mice leads to arrested spermatogenesis, there is no direct evidence that Trf2 is recruited to chromatin to directly regulate gene expression. We used genetically modified mice where endogenous Trf2 has been modified to carry a TAP-TAG to perform ChIP-reChIP followed by deep sequencing. We found that Trf2 is recruited to all active promoters as a subunit of TFIIA/ALF complex together with TBP. To assess the effect of Trf2 inactivation on gene expression we performed RNA-seq on WT and Trf2-/- testes at 21 days of age when haploid cell gene expression is activated. Overall design: The testes from three 21 day old WT and three Trf2-/- males were taken to prepare total RNAs for deep sequencing.
TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression.
Specimen part, Subject
View SamplesThe platelet-derived growth factor receptor alpha (PDGFR) exhibits divergent effects in skeletal muscle. At physiological levels, signaling through this receptor promotes muscle development in growing embryos and proper angiogenesis in regenerating adult muscle. However, either increased PDGF ligands or enhanced PDGFR pathway activity causes pathological fibrosis. This excessive collagen deposition, which is seen in aged and diseased muscle, interferes with proper muscle function and limits the effectiveness of gene- and cell-based therapies for muscle disorders. Although compelling evidence exists for the role of PDGFR in fibrosis, little is known about the cells through which this pathway acts. Here we show that PDGFR signaling regulates a population of muscle-resident fibro/adipogenic progenitors (FAPs) that play a supportive role in muscle regeneration but may also cause fibrosis when aberrantly regulated. We found that FAPs produce multiple transcriptional variants of PDGFR with different polyadenylation sites, including an intronic variant that codes for a protein isoform containing a truncated kinase domain. This variant, upregulated during regeneration, acts as a decoy to inhibit PDGF signaling and to prevent FAP over-activation. Moreover, increasing expression of this isoform limits fibrosis in vivo, suggesting both biological relevance and therapeutic potential of modulating polyadenylation patterns in stem cell populations.
Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis.
Sex, Specimen part, Treatment
View SamplesThe granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. However, the post-transcriptional gene expression studies on miRNA level in the human ovary have been scarce. The current study determined the miRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Overall design: Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Libraries of all 6 samples were sequenced twice, generating 2 technical replicates for each sample. Differential gene expression study was performed on the pooled results of technical replicates.
Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes.
Specimen part, Subject
View SamplesThe platelet-derived growth factor receptor alpha (PDGFR) exhibits divergent effects in skeletal muscle. At physiological levels, signaling through this receptor promotes muscle development in growing embryos and proper angiogenesis in regenerating adult muscle. However, either increased PDGF ligands or enhanced PDGFR pathway activity causes pathological fibrosis. This excessive collagen deposition, which is seen in aged and diseased muscle, interferes with proper muscle function and limits the effectiveness of gene- and cell-based therapies for muscle disorders. Although compelling evidence exists for the role of PDGFR in fibrosis, little is known about the cells through which this pathway acts. Here we show that PDGFR signaling regulates a population of muscle-resident fibro/adipogenic progenitors (FAPs) that play a supportive role in muscle regeneration but may also cause fibrosis when aberrantly regulated. We found that FAPs produce multiple transcriptional variants of PDGFR with different polyadenylation sites, including an intronic variant that codes for a protein isoform containing a truncated kinase domain. This variant, upregulated during regeneration, acts as a decoy to inhibit PDGF signaling and to prevent FAP over-activation. Moreover, increasing expression of this isoform limits fibrosis in vivo, suggesting both biological relevance and therapeutic potential of modulating polyadenylation patterns in stem cell populations.
Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis.
Sex, Specimen part, Treatment
View Samples