Hereditary sensory and autonomic neuropathy type I (HSAN-I) is neurological disorder characterized by distal sensory neuron dysfunction, frequent infections, and ulcerative mutilations. It remains unknown if HSAN-I directly dampens protective immunity. Here we report that HSAN-I-causing mutations of serine palmitoyltransferase long chain base subunit 2 (SPTLC2) affect human T cell responses. T cell antigenic stimulation and inflammation induce SPTLC2 expression. Murine T cell-specific ablation of Sptlc2 fundamentally impairs antiviral T cell survival and effector function. Mechanistically, SPTLC2-deficiency reduces sphingolipid biosynthetic flux and causes a prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress and CD8+ T cell death. Antiviral CD8+ T cell responses are restored by supplementing sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Our study reveals that SPTLC2 underpins protective adaptive immunity by translating extracellular stimuli into intracellular anabolic signals and reducing cellular stress to maintain metabolic reprogramming sustainability Overall design: Triplicates of each group were used for RNA-seq. Four groups were studied: Wild-type and SPTLC2-deficient CD8+ T cells, harvested from either naïve mice (D0) or mice infected with LCMV Armstrong 8 days earlier (D8).
Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8<sup>+</sup> T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness.
Treatment, Subject
View SamplesAnalysis of gene-expression profiles with microarrays can be very useful to dissect specific responses and to characterize with a global view, new elements for improving the diagnosis, treatment and understanding of allergic diseases. We have used this approach for studying the olive pollen response, taking advantage our previous results of T-cell epitope mapping on Ole e 1 molecule (the major allergen from olive pollen) in order to analyze the stimuli influence on the gene-expression of olive pollen allergic patients. Peripheral blood mononuclear cells (PBMCs) from 6 healthy controls and 6 allergic subjects were stimulated 24 hours with olive pollen stimuli: Ole e 1 molecule and two Ole e 1 peptides previously defined as P2+3 (aa10-31), mainly recognized by non-allergic subjects (possible immunoregulatory epitope) and P10+12+13 (aa90-130), immunodominant T-cell epitope. RNA extracted from basal and stimulated PBMCs was analyzed by HuGeU133 plus 2.0 GeneChip, Affymetrix (38.500genes). After assessment of data quality by standard quality checks and principal components analysis (PCA), differential gene-expression by experimental conditions was performed by multiple testing, using microarrays specific software. Differences in functional analysis were performed by KEGG, for pathways and Gene-Ontology for biological process. The results of gene-expression by PCA showed differential clusters that correlated with the experimental conditions from samples of allergic patients. Analysis of differential gene-expression by multiple testing, and functional analysis by KEGG and Gene-Ontology revealed differential genes and pathways among the 4 experimental conditions.
Therapeutic targets for olive pollen allergy defined by gene markers modulated by Ole e 1-derived peptides.
Specimen part, Disease
View SamplesThe maize inbred line A661 shows a characteristic phenotype when grown at suboptimal temperatures for three weeks and then is exposed to optimal temperatures for one extra week. After this period the third leaf showed two well defined sections: distal (chlorophyll-less; CL) and proximal (chlorophyll-containing; CC) sections. To further investigate the performance of the inbred line A661 under cold conditions a gene expression profiling analysis was conducted using large scale maize microarrays. A total of 1002 transcripts change their expression between both leaf sections and the majority of these codify for proteins located to the chloroplast.
Genetic regulation of cold-induced albinism in the maize inbred line A661.
No sample metadata fields
View SamplesOligodendrocytes are cells from the central nervous system that can be grouped into precursors, myelin-forming, and non-myelinating perineuronal. The function of perineuronal oligodendrocytes is unknown; it was suggested that they can ensheath denuded axons. We tested this hypothesis. Using cell-specific tags, microarray technology and bioinformatics tools to identify gene expression differences between these subpopulations allowed us to capture the genetic signature of perineuronal oligodendrocytes. Here we report that perineuronal oligodendrocytes are configured for a dual role. As perineuronal, they integrate a repertoire of transcripts designed to create a cell with its own physiological agenda. But they maintain a reservoir of untranslated transcripts encoding the major myelin proteins for we speculate a pathological eventuality. We posit that the signature molecules PDGFR-, cytokine PDGF-CC, and the transcription factor Pea3 used among others - to define the non-myelinating phenotype, may be critical for mounting a myelinating programme during demyelination. Harnessing this capability is of therapeutic value for diseases such as multiple sclerosis. This is the first molecular characterization of perineuronal oligodendrocytes.
The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression.
Sex, Age, Specimen part
View SamplesPpm1f regulation in the amygdala after acute stress immobilization
Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression.
Sex, Age, Specimen part
View SamplesZBTB4 is a mammalian transcription factor with Zinc fingers and a BTB/POZ domain, which can bind methylated CpGs, as well as certain unmethylated consensus sequences. ZBTB4 is frequently downregulated in human cancers, but it is unclear whether this is a cause or consequence of transformation. To investigate the role of ZBTB4 in normal and pathological conditions, we generated Zbtb4-/- mice
Loss of the Methyl-CpG-Binding Protein ZBTB4 Alters Mitotic Checkpoint, Increases Aneuploidy, and Promotes Tumorigenesis.
Specimen part
View SamplesPpm1f regulation in the medial prefrontal cortex (mPFC) after acute stress immobilization
Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression.
Sex, Age, Specimen part
View SamplesThe weaning period consist of a critical postnatal window for structural and physiologic maturation of rat beta cells. To investigate transcriptome changes involved in the maturation of beta cells neighboring this period we performed microarray analysis in FACS beta cell enriched populations to detail the global programme of gene expression to identify its changes during this process.
Transcriptome landmarks of the functional maturity of rat beta-cells, from lactation to adulthood.
Sex
View SamplesGlobal gene expression analysis of grapevine cv. Pinot Noir berries during development and ripening. Time-course comparison of samples collected at three developmental stages (stages 33, 34 and 36 according to the modified E-L system, ref: Coombe BG, Aust J Grape Wine Res 1995, 1: 104-110) during three seasons (2003, 2005 and 2006).
Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.
Age, Specimen part, Time
View Samples