A mRNA expression study has been performed 20-25 minutes postmortem obtained samples from Longissimus dorsi muscle of 59 Duroc x LD/LW pigs to search for gene sequences related to meat quality (pH24, pH45, Lab colour coordinates, curing yield and exudation at three different times) or to meat composition (intramuscular fat, content of several fatty acid (C16:0, C18:0, C18:1 and C18:2), ratio of saturated, monounsaturated and polyunsaturated fatty acids, and protein and humidity contents) traits in order to find targets for selection. Gene ontology analysis, biological pathways and gene networks studies all show, that many more differentially expressed genes (506 vs 279) are related to meat quality (Group P, or perimortem characters) than to meat composition traits (Group L, or whole life traits). The difference between the number of GO terms annotated, biological pathways and gene networks in groups P and L is notable due to the differences in the complexity of the generation process of P-traits and the involvement of other tissues or organs in the generation of variability of L-traits. Also, interactions between a list of differentially expressed genes were found in ECM-receptor interaction, TGF-beta signaling pathway, fatty acid elongation in mitochondria and adipocytokine signalling pathway indicating that a substantial fraction of the gene networks could be associated with interactions between differential expressed genes related to traits under study. A high number of the most overexpressed genes are related to muscle development and functionality and repair mechanisms; they could be good candidates for breeding programs whose main goal is to enhance meat quality.
Early postmortem gene expression and its relationship to composition and quality traits in pig Longissimus dorsi muscle.
Age, Specimen part
View SamplesSialic acids on vertebrate cell surfaces mediate many biological roles. Altered expression of certain sialic acid types or their linkages can have prognostic significance in human cancer. A classic but unexplained example is enhanced 2-6-sialylation on N-glycans, resulting from over-expression of the Golgi enzyme -galactoside:2-6-sialyltransferase (ST6Gal-I). Previous data supporting a role for the resulting Sia2-3Gal1-4GlcNAc (Sia6LacNAc) structure in tumor biology were based on in vitro studies in transfected carcinoma cells, in which increased Sia6LacNAc on 1-integrins enhanced their binding to ligands, and stimulated cell motility. Here we examine for the first time the in vivo role of the ST6Gal-I enzyme in the growth and differentiation of spontaneous mammary cancers in mice transgenic for an MMTV-promoter-driven polyoma-middle-T antigen, a tumor in which beta1-integrin function is important for tumorigenesis, and in maintaining the proliferative state of tumor cells. Tumors induced in St6gal1 null animals were more differentiated in comparison to those in the wild-type background, both by histological analysis and by protein expression profiles. Furthermore, we show the St6gal1 null tumors have selectively altered expression of genes associated with focal adhesion signaling, and have decreased phosphorylation of FAK, a downstream target of 1-integrins. This first in vivo evidence for a role of ST6Gal-I in tumor progression was confirmed using a novel approach, which conditionally restored St6gal1 in cell lines derived from the null tumors. These findings indicate a role for ST6Gal-I as a mediator of tumor progression, with its expression causing a less differentiated phenotype, via enhanced 1-integrin function.
alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo.
Sex, Age, Specimen part
View SamplesPlants have developed complex mechanisms to respond and adapt to abiotic stresses, coupling elaborate modulation of gene expression together with the preservation of genome stability. Epigenetic mechanisms - DNA methylation, chromatin modifications and non coding RNAs - were shown to play a fundamental role in stress-induced gene regulation and may also result in genome destabilization, with the activation and/or the transcription of silenced transposons and retroelements, causing genome rearrangements and novel gene expression patterns. Maize leaf transcriptome was analyzed by total RNA-Seq in both B73 and rmr6 (PolIV mutant involved in siRNA biogenesis and in the RdDM pathway) after drought and salt stress application. Reference annotation based transcript assembly allowed the identification both of new expressed loci and splicing variants, improving the current maize transcriptome annotation. Many antisense transcripts matching on the opposite strand of annotated loci were also identified, while more than the 20% of transcripts represent non coding RNA belonging to four classes: siRNAs, shRNAs, lncRNAs and transposable elements (or their relics). Several lncRNAs are modulated by stress application while TE-related sequences are mainly expressed in rmr6 and up-regulated by the stress. Overall design: Total RNA-Seq analysis of maize leaves from wt and rmr6-1 mutant plants grown under 1) control conditions, 2) drought stress, 3) salt stress, 4) salt+drought stress. Each condition was investigated in triplicate after 10 days of treatment and after 7 days of recovery. Samples derived from replicates 2 and 3 were pooled and sequenced together
Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription.
Treatment, Subject, Time
View SamplesMolecular profiling of infiltrating monocyte-derived macrophages versus resident kupffer cells following acute liver injury
Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury.
Specimen part, Disease, Time
View SamplesOur data mark GIP as a beneficial immunoregulator during obesity and suggest a novel untapped therapeutic potential for specific targeted GIP analogs.
Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis.
Sex, Specimen part
View SamplesHistone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and non-repetitive transcriptional up-regulated loci. RNA-Seq both of young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental programme results as disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility and epigenetic regulation of genome activity. Overall design: Total RNA-Seq analysis of maize anthers at post-meiotic (PMeA) and mitotic (MiA) stages. 2 biological replicates for stage, each obtained by pooling anthers from three tassels per genotype were collected from wild-type and hda108 mutant plants. Strand-specific sequencing on a Illumina HiSeq2500
Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by <i>HISTONE DEACETYLASE 108</i>.
Specimen part, Subject
View SamplesDrought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at transcription levels in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme (NADP-ME) and pyruvate dehydrogenase (PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase (CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase (ALDH), ascorbate-dependant oxidoreductase (ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8 (HSP17.8) and dehydrin 3 (DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were likely constitutively expressed in drought-tolerant genotypes. Among them, 7 known annotated genes might enhance drought tolerance through signaling (such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP), anti-senescence (G2 pea dark accumulated protein GDA2) and detoxification (glutathione S-transferase (GST) pathways. In addition, 18 genes, including those encoding l-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C) and several chaperones, were differentially expressed in all genotypes under drought; thus, they were more likely general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.
Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage.
Specimen part, Treatment
View SamplesIn this study we investigated the changes in mRNA expression upon treatment of SH-SY5Y cells to 10M cisplatin for 72h.
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.
Specimen part, Cell line, Treatment
View SamplesInterleukin-10 (IL-10) is a pleiotropic anti-inflammatory cytokine produced and sensed by most hematopoietic cells. Genome wide association studies and experimental animal models point at a central role of the IL-10 axis in Inflammatory Bowel Diseases. Here we investigated the importance of intestinal macrophage production of IL-10 and their IL-10 exposure, as well as the existence of an IL-10-based autocrine regulatory loop in the gut. Specifically, we generated mice harboring IL-10 or IL-10 receptor (IL-10R) mutations in intestinal lamina propria-resident chemokine receptor CX3CR1hi-expressingmacrophages. We found macrophage-derived IL-10 dispensable for gut homeostasis and maintenance of colonic T regulatory cells. In contrast, loss of IL-10 receptor expression impaired the critical conditioning of these monocyte-derived macrophages, but resulted in spontaneous development of severe colitis. Collectively, our results highlight IL-10 as a critical homeostatic macrophage-conditioning factor in the colon and define intestinal CX3CR1hi macrophages as a decisive factor that determines gut health or inflammation.
Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis.
Age, Specimen part
View SamplesLy6Chi monocytes massively infiltrate the CRC-tumors by virtue of their CCR2 expression and further mature into Ly6CloF4/80hi CD64hiMHCII+ TAM upon tumor progression. We demonstrated that TAM-deficient tumors display impaired tumor-growth via alternation of the ECM morphology, structure and composition. Using advanced high-resolution optical imaging to visualize the tumoral-ECM macromolecule network together with transcriptomic and proteomic approaches we unraveled that TAM play critical role in the deposition, linearization and cross-linking of collagenous ECM. Remarkably, we show that cues embedded in ECM by TAM-mediated remodeling activity promote tumor cell proliferation in vitro and orthotopic tumor development in vivo.
Tumor macrophages are pivotal constructors of tumor collagenous matrix.
Sex, Specimen part
View Samples