This SuperSeries is composed of the SubSeries listed below.
miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia.
Specimen part, Disease
View SamplesTo identify such targets of leukemia-related miRNAs such as miR-196b, we conducted Affymetrix gene arrays of leukemic BM samples from 24 mice including 9 primary (including 3 each of negative control, MLL-AF9, and miR-196b+MLL-AF9) and 15 secondary (including 3 negative control, 6 MLL-AF9, and 6 miR-196b+MLL-AF9) recipient mice
miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia.
Specimen part
View SamplesDepletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. Wild type cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)
Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.
Subject
View SamplesDepletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?phm3 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)
Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.
Subject
View SamplesDepletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. pho90_OX cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)
Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.
Subject
View SamplesDepletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. phm3 damp cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)
Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.
Subject
View SamplesDepletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?vip1 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)
Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.
Subject
View SamplesDepletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. pho85 damp cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)
Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.
Specimen part, Treatment
View SamplesDepletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?phm4 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 3.75 hours Overall design: 16 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)
Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.
Subject
View Samples