Androgens are required for the development of normal prostate, and they are also linked to the development of prostate cancer.
Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases.
Specimen part, Cell line
View SamplesBackground – Epigenetic alterations are stable modifications to chromatin structure that occur in response to environmental cues such as hypoxia or altered nutrient delivery. DNA methylation is a well-established and dynamic DNA modification that contributes to the regulation of gene expression. In the current study, we test the hypothesize that ischemic heart failure is defined by a distinct signature of DNA methylation that corresponds with altered expression of genes involved in cardiac ventricular dysfunction. Methods and Results – Using a methylation array, we quantified genome-wide DNA methylation of endomyocardial samples acquired from patients with ischemic (n = 6) or non-ischemic (n = 5) heart failure. RNA-sequencing analysis was performed in the same samples to identify transcriptomic changes (Fold Change > 1.5, Q < 0.05, FPKM > 2) associated with differential methylation (|Percent Change| > 5%, p < 0.05). Of the promoter-associated CpG Islands, which are well-established regions of negative transcriptional regulation, we identified a signature of robust hypermethylation. The methylation changes linked to significantly decreased transcripts included key fatty acid metabolic regulators (e.g. KLF15, AGPAT9, APOA1, and MXD4). Among the few hypomethylated and induced genes was PFKFB3, which encodes for the rate-limiting enzyme of glycolysis. Gene set enrichment analysis identified TGFß as a nodal upstream regulator of the methylation changes, potentially supporting a role of DNA methylation in the increased fibrosis and apoptosis that accompanies ischemic heart failure. Conclusions – Our data identify that the DNA methylation signature recapitulates the pathologic hallmarks of ischemic heart failure. Furthermore, we show that differential DNA methylation of CpG islands within the promoter depict alterations in metabolic substrate utilization known to occur in ischemic heart failure, and may govern a return to the fetal-like metabolic program. Overall design: RNA Sequencing analysis of left ventricle samples in 11 subjects with end-stage heart failure.
Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure.
Sex, Age, Race, Subject
View SamplesRenal cell carcinoma (RCC) is among the ten most common malignancies. By far, the most common histology is clear cell (ccRCC). The Cancer Genome Atlas and other large scale sequencing studies of ccRCC have been integral to the current understanding of molecular events underlying RCC and its biology. However, these data sets have focused on primary RCC which often demonstrates indolent behavior. In contrast, metastatic disease is the major cause of mortality associated with ccRCC. However, data sets examining metastatic tumor are sparse. We therefore undertook an integrative analysis of gene expression and DNA methylome profiling of metastatic ccRCC in addition to primary RCC and normal kidney. Integrative analysis of the methylome and transcriptome identified over 30 RCC specific genes whose mRNA expression inversely correlated with promoter methylation including several known targets of hypoxia inducible factors (HIFs). Notably, genes encoding several metabolism-related proteins were identified as differentially regulated via methylation. Collectively, our data provide novel insight into biology of aggressive RCC. Furthermore, they demonstrate a clear role for epigenetics in the promotion of HIF signaling and invasive phenotypes in renal cancer.
Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis.
Specimen part
View SamplesUnderstanding gene expression changes during transformation from normal tissue to primary RCC and then to metastasis is important. Such analysis is pivotal for undertanding biology in renal cancer and also to unearth novel gene targets.
Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis.
Specimen part
View SamplesDespite the prevalence and recognition of its detrimental impact, clinical complications of sepsis remain a major challenge. Here, we investigated the effects of myeloid ferritin heavy chain (FtH) in regulating the pathogenic sequelae of sepsis. We demonstrate that deletion of myeloid FtH leads to tolerance towards sepsis as evidenced by reduced serum cytokine levels, multi-organ dysfunction and subsequent mortality. We identified that such tolerance is predominantly mediated by the compensatory increase in circulating ferritin (ferritin light chain; FtL) in the absence of myeloid FtH. Our in vitro and in vivo studies indicate that prior exposure to ferritin provides significant tolerance to the septic process by restraining an otherwise dysregulated response to infection. These findings are mediated by an inhibitory action of ferritin on NF-?B activation and its downstream effects. Taken together, our findings suggest an essential immunomodulatory function for circulating ferritin and enhances our understanding of this acute phase reactant. Overall design: Total RNA were isolated from blood leukocytes of wild type FtH mice and Myeloid deficient FtH mice following sham and CLP surgery. Three biological replicates were considered for each genotype and surgery type.
Ferritin Light Chain Confers Protection Against Sepsis-Induced Inflammation and Organ Injury.
Cell line, Subject
View SamplesDendritic cells (DCs) are pivotal for both recognition of antigens and control of an array of immune responses by recognizing microbes through distinct pattern recognition receptors (PRRs). The first microbial component to be studied in detail and known to cause septic shock is endotoxin (LPS). DCs recognize LPS via Toll-like receptor TLR-47. LPS causes many changes in the DCs, but the elicitation of cytokine production is perhaps the one with clear biologic relevance.
Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality.
Specimen part, Treatment
View SamplesAn integrative analysis of this compendium of proteomic alterations and transcriptomic data was performed revealing only 48-64% concordance between protein and transcript levels. Importantly, differential proteomic alterations between metastatic and clinically localized prostate cancer that mapped concordantly to gene transcripts served as predictors of clinical outcome in prostate cancer as well as other solid tumors.
Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression.
No sample metadata fields
View SamplesSialic acids on vertebrate cell surfaces mediate many biological roles. Altered expression of certain sialic acid types or their linkages can have prognostic significance in human cancer. A classic but unexplained example is enhanced 2-6-sialylation on N-glycans, resulting from over-expression of the Golgi enzyme -galactoside:2-6-sialyltransferase (ST6Gal-I). Previous data supporting a role for the resulting Sia2-3Gal1-4GlcNAc (Sia6LacNAc) structure in tumor biology were based on in vitro studies in transfected carcinoma cells, in which increased Sia6LacNAc on 1-integrins enhanced their binding to ligands, and stimulated cell motility. Here we examine for the first time the in vivo role of the ST6Gal-I enzyme in the growth and differentiation of spontaneous mammary cancers in mice transgenic for an MMTV-promoter-driven polyoma-middle-T antigen, a tumor in which beta1-integrin function is important for tumorigenesis, and in maintaining the proliferative state of tumor cells. Tumors induced in St6gal1 null animals were more differentiated in comparison to those in the wild-type background, both by histological analysis and by protein expression profiles. Furthermore, we show the St6gal1 null tumors have selectively altered expression of genes associated with focal adhesion signaling, and have decreased phosphorylation of FAK, a downstream target of 1-integrins. This first in vivo evidence for a role of ST6Gal-I in tumor progression was confirmed using a novel approach, which conditionally restored St6gal1 in cell lines derived from the null tumors. These findings indicate a role for ST6Gal-I as a mediator of tumor progression, with its expression causing a less differentiated phenotype, via enhanced 1-integrin function.
alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo.
Sex, Age, Specimen part
View SamplesDiabetogenic CD8+ G9C8 clone cells and the T cells from a transgenic mouse bearing the same TCR as the clone, displayed differences in their ability to induce disease in vivo.Microarray analysis was done to identify the molecular basis for such differences between the two sets of CD8 T cells.
Cytotoxic mechanisms employed by mouse T cells to destroy pancreatic β-cells.
Specimen part, Disease
View SamplesWe present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype. Overall design: In order to compare the population of chalcone synthase related small RNAs, we sequenced 3 to 6 million small RNAs using the Illumina Genome Analyzer from the following four soybean cultivars and tissues with specific genotypes at the I locus: Richland immature seed coats (homozygous for the dominant I allele that specifies yellow seed coat); Williams immature seed coats (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum) Williams (i-i/i-i yellow) immature cotyledons (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum); Williams 55 immature seed coats (a Williams isogenic line homozygous for the recessive i allele that specifics pigmented seed coats. All seed coats and cotyledons were dissected from green stage immature seeds within the fresh weight range of 50-75 mg.
Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats.
Subject
View Samples