This SuperSeries is composed of the SubSeries listed below.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesWe performed genomic and transcriptomic analysis of seven cases of molecular Burkitt lymphoma (mBL) developed in immunosuppressed patients who underwent solid organ transplantation. Interestingly, three cases (43%) were MYC-translocation-negative and revealed the 11q-gain/loss aberration recently identified in 3% of mBL developed in immunocompetent hosts.1 Based on array CGH data, minimal gain and loss regions of 11q (MGR/~4Mb and MLR/~13.5Mb, respectively) were defined and integrative genomic and transcriptomic analysis identified 35 differentially expressed genes, when compared with classic BL. All 16 MGR-dysregulated genes were upregulated, including cancer related USP2, CBL and PAFAH1B2. As expected, all 19 MGL-dysregulated genes were downregulated and two of them, TBRG1 and EI24, are potential tumor suppressor genes. Interestingly, the vast majority of dysregulated 11q23-q25 genes are involved in the MYC and TP53 networks. We hypothesize that the 11q-gain/loss aberration represents a molecular variant of t(8q24/MYC) and affects the same pathological pathways as the MYC oncogene.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesTo understand how haploinsufficiency of progranulin (PGRN) protein causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSC) from patients carrying the GRNIVS1+5G>C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD and known to express PGRN. Although generation of neuroprogenitors was unaffected, their further differentiation into neurons, especially CTIP2-, FOXP2- or TBR1-TUJ1 double positive cortical neurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of PGRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNAseq analysis confirmed reversal of altered gene expression profile following genetic correction. Wnt signaling pathway, one of the top defective pathways in FTD-iPSC-derived neurons coupled with its reversal following genetic correction, makes it an important candidate. Therefore, we demonstrate for the first time that PGRN haploinsufficiency hampers corticogenesis in vitro. Overall design: We profiled 6 samples: two biological replicates for 3 conditions. Condition 1 consists of neuronal progeny derived from human Embryonic Stem Cells. Condition 2 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation. Condition 3 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation, genetically modified to correct the PGRN defect.
Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia.
No sample metadata fields
View SamplesThis experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesWe report on two novel t(15;21) alterations [t(15;21)(q24;q22) and t(15;21)(q21;q22)], which led to concurrent disruption of RUNX1 and two translocation partner genes encoding for transcription factors (SIN3A, TCF12) Overall design: Examination of four different patients with myeloid disorders. 2 out of 4 have been analyzed by means RNAseq
t(15;21) translocations leading to the concurrent downregulation of RUNX1 and its transcription factor partner genes SIN3A and TCF12 in myeloid disorders.
No sample metadata fields
View SamplesWe have ablated TAF10 in the erythroid compartment only by crossing the TAF10lox mice with the EpoR-Cre mice and we have studied the development of the erythroid cells in vivo. TAF10 ablation led to embryonic death at E13.5 while at E12.5 there was a clear developmental defect which was reflected in the transcriptional profile of the fetal liver cells. Gata1-target genes were mostly affected and were responsible for the lethal phenotype. Overall design: mRNA from E12.5 fetal livers of TAF10lox/KO:EpoR-Cre+/- (TAF10KO) mice, TAF10HET and WT mice was profiled by NGS (Illumina).
TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma.
Age, Specimen part, Disease, Treatment
View SamplesHepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six HSTL cases with i(7)(q10) and three cases with ring 7 [r(7)], a rare variant aberration. Using high resolution array CGH, we prove that HSTL is characterized by the common loss of a 34.88 Mb region at 7p22.1p14.1 (3506316-38406226 bp) and duplication/amplification of a 38.77 Mb region at 7q22.11q31.1 (86259620-124892276 bp). Our data indicate that i(7)(q10)/r(7)-associated loss of 7p22.1p14.1 is a critical event in the development of HSTL, while gain of 7q sequences drives progression of the disease and underlies its intrinsic chemoresistance. Loss of 7p22.1p14.1 does not target a postulated tumor suppressor gene but unexpectedly enhances the expression of CHN2 from the remaining 7p allele, resulting in overexpression of 2-chimerin and dysregulation of a pathway involving RAC1 and NFATC2 with a cell proliferation response. Gain of 7q leads to increased expression of critical genes, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any additional recurrent mutations or gene fusions, suggesting that i(7)(q10) is the only driver event in this tumor. Our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes, including three located on chromosome 7 (CHN2, ABCB1 and PPP1R9A), distinguishing HSTL from other malignancies
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma.
Age, Specimen part, Treatment
View SamplesThe splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34+ cells from MDS patients with SF3B1 mutations using RNA-sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared to wildtype cases include genes involved in MDS pathogenesis (ASXL1, CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7, SLC25A37) and RNA splicing/processing (PRPF8, HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. Our data indicate that SF3B1 plays a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link. Overall design: RNA-Seq was performed to compare the transcriptome of bone marrow CD34+ cells from eight MDS patients with SF3B1 mutation, four MDS patients with no known splicing mutation and five healthy controls.
Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts.
Specimen part, Disease stage
View Samples