Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer in which differences in survival rates might be related to a variety in gene expression profiles. Although the molecular biology of PDAC begins to be revealed, genes or pathways that specifically drive tumour progression or metastasis are not well understood. Therefore, we performed microarray analyses on whole-tumour samples of 2 human PDAC subpopulations with similar clinicopathological features, but extremely distinct survival rates after potentially curative surgery, i.e., good outcome (OS and DFS>50months) versus bad outcome (OS<19months and DFS<7months). Additionally, liver- and peritoneal metastases were analysed and compared to primary cancer tissue. The integrin and ephrin receptor families were upregulated in all PDAC samples, irrespective of outcome, supporting an important role of the interaction between pancreatic cancer cells and the surrounding desmoplastic reaction in tumorigenesis and cancer progression. Moreover, some components, such as ITGB1 and EPHA2, were upregulated in PDAC samples with a poor outcome, Additionally, overexpression of the non-canonical Wnt/-catenin pathway and EMT genes in PDAC samples with bad versus good outcome suggests their contribution to the invasiveness of pancreatic cancer, with -catenin being also highly upregulated in metastatic tissue. Thus, we conclude that components of the integrin and ephrin pathways and EMT-related genes might serve as molecular markers in pancreatic cancer as their expression seems to be related with prognosis.
Molecular markers associated with outcome and metastasis in human pancreatic cancer.
Sex, Age, Specimen part, Disease stage
View SamplesSUMMARY: This article presents a predictive molecular signature that marks the early onset of fibrosis in a translational nonalcoholic steatohepatitis mouse model. Overlap of genes and processes with human nonalcoholic steatohepatitis and a list of top candidate biomarkers for early fibrosis are described. BACKGROUND & AIMS: The incidence of nonalcoholic steatohepatitis (NASH) is increasing. The pathophysiological mechanisms of NASH and the sequence of events leading to hepatic fibrosis are incompletely understood. The aim of this study was to gain insight into the dynamics of key molecular processes involved in NASH and to rank early markers for hepatic fibrosis. METHODS: A time-course study in low-density lipoprotein–receptor knockout. Leiden mice on a high-fat diet was performed to identify the temporal dynamics of key processes contributing to NASH and fibrosis. An integrative systems biology approach was used to elucidate candidate markers linked to the active fibrosis process by combining transcriptomics, dynamic proteomics, and histopathology. The translational value of these findings were confirmed using human NASH data sets. RESULTS: High-fat-diet feeding resulted in obesity, hyperlipidemia, insulin resistance, and NASH with fibrosis in a time-dependent manner. Temporal dynamics of key molecular processes involved in the development of NASH were identified, including lipid metabolism, inflammation, oxidative stress, and fibrosis. A data-integrative approach enabled identification of the active fibrotic process preceding histopathologic detection using a novel molecular fibrosis signature. Human studies were used to identify overlap of genes and processes and to perform a network biology-based prioritization to rank top candidate markers representing the early manifestation of fibrosis. CONCLUSIONS: An early predictive molecular signature was identified that marked the active profibrotic process before histopathologic fibrosis becomes manifest. Early detection of the onset of NASH and fibrosis enables identification of novel blood-based biomarkers to stratify patients at risk, development of new therapeutics, and help shorten (pre)clinical experimental time frames. Keywords: Systems Biology; Metabolic Syndrome; Liver Disease; Diagnosis. Overall design: In total 9 treatment groups: 5 Control groups (chow = standard diet; t=0, 6, 12, 18, 24 weeks), 4 Treatment groups (HFD = High Fat diet; 6, 12, 18, 24 weeks).
Uncovering a Predictive Molecular Signature for the Onset of NASH-Related Fibrosis in a Translational NASH Mouse Model.
Specimen part, Subject
View SamplesSkeletal muscle mitochondrial dysfunction is secondary to T2DM and can be improved by long-term regular exercise training
Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes.
Age
View SamplesPurpose: To explore the side population (SP) in pancreatic ductal adenocarcinoma (PDAC) for its gene expression profile and its association to cancer stem cells (CSC) and to evaluate the value of genes from its gene signature on patient survival.
Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes.
Sex, Age, Specimen part, Disease stage
View SamplesAs a result of ancestral whole genome and small-scale duplication events, the genome of Saccharomyces cerevisiae's, and of many eukaryotes, still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (MG strain). Remarkably, a combination of quantitative, systems approach and of semi-quantitative analysis in a wide array of growth environments revealed the absence of phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic for S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means for fixing minor glycolytic paralogs in the yeast genome. MG was carefully designed and constructed to provide a robust, prototrophic platform for quantitative studies, and is made available to the scientific community. Overall design: The goals of the present study are to experimentally explore genetic redundancy in yeast glycolysis by cumulative deletion of minor paralogs and to provide a new experimental platform for fundamental yeast research by constructing a yeast strain with a functional 'minimal glycolysis'. To this end, we deleted 13 minor paralogs, leaving only the 14 major paralogs for the S. cerevisiae glycolytic pathway. The cumulative impact of deleting all minor paralogs was investigated by two complementary approaches. A first, quantitative analysis focused on the impact on glycolytic flux under a number of controlled cultivation conditions that, in wild-type strains, result in different glycolytic fluxes. These quantitative growth studies were combined with transcriptome, enzyme-activity and intracellular metabolite assays to capture potential small phenotypic effects. A second, semi-quantitative characterization explored the phenotype of the 'minimal glycolysis' strain under a wide array of experimental conditions to identify potential context-dependent phenotypes
The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the <i>Saccharomyces</i> Genus.
Cell line, Subject
View SamplesSynovial biopsies were obtained from rheumatoid arthritis (RA) synovium and from subjects without a joint disease to find gene upregulated during RA.
Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.
Disease, Disease stage
View SamplesExpression profiles of anti-TNF responders were compared to profiles of anti-TNF non-responders in order to identify an expression signature for anti-TNF response
Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis.
Specimen part, Disease, Disease stage, Treatment
View SamplesBackground
Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data.
No sample metadata fields
View SamplesHeparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analog of the HS constituent GlcNAc and studied the compounds metabolic fate and its effect on angiogenesis. The 4-deoxy analog was activated intracellularly into UDP-4-deoxy-GlcNAc and HS expression was inhibited up to ~96% (IC50 = 16 M). HS chain size was reduced, without detectable incorporation of the 4-deoxy analog, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Micro-injection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis which hampers pro-angiogenic signaling and neo-vessel formation.
Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis.
Cell line, Treatment
View SamplesHuman T-lymphotropic virus type 1 (HTLV-1) is associated with the development of Adult T-cell Leukemia, an aggressive CD4+ T-cells malignancy. Here, we have developed a new procedure to infect humanized mice with proviruses displaying specific mutations, such as one leading to the loss of the PDZ domain-binding motif (PBM) of Tax. In order to specifically analyze the in vivo role of the PBM of Tax, a comparative study of infected hu-mice was performed. We used next-generation sequencing to perform genome-wide transcriptomic analysis of T-cells infected with wild-type HTLV-1 virus or with virus bearing a mutated form of Tax lacking the PBM. Our results suggest that Tax PBM might be involved in the regulation of genes implicated in proliferation, apoptosis and cytoskeleton organization. Overall design: mRNA profiles of T-cells obtained from hu-Mice infected with wild-type or Tax-PBM HTLV-1 were generated by deep-sequencing in triplicates using Illumina's Hiseq3000 platform.
PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.
Specimen part, Subject
View Samples