This SuperSeries is composed of the SubSeries listed below.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Specimen part, Treatment
View SamplesThe development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Treatment
View SamplesThe development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Specimen part, Treatment
View SamplesWe identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.
Specimen part, Treatment
View SamplesTo determine the role of RPX on cell proliferation and organ development, we performed microarray experiments in search of RPX target genes by using an estradiol-inducible RPXC protein.
An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana.
Specimen part
View SamplesPurpose: Presence of pelvic lymph node metastases is the main prognostic factor in early stage cervical cancer patients, primarily treated with surgery. Aim of this study was to identify cellular tumor pathways associated with pelvic lymph node metastasis in early stage cervical cancer.
Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer.
Age
View SamplesProbiotic bacteria, specific representatives of bacterial species that are a common part of the human microbiota, are proposed to deliver health benefits to the consumer by modulation of intestinal function via largely unknown molecular mechanisms. To explore in vivo mucosal responses of healthy adults to probiotics, we obtained transcriptomes in an intervention study following a double-blind placebo-controlled cross-over design. In the mucosa of the proximal small intestine of healthy volunteers, probiotic strains from the species Lactobacillus acidophilus, L. casei and L. rhamnosus each induced differential gene regulatory networks and pathways in the human mucosa. Comprehensive analyses revealed that these transcriptional networks regulate major basal mucosal processes, and uncovered remarkable similarity to response profiles obtained for specific bioactive molecules and drugs. This study elucidates how intestinal mucosa of healthy humans perceive different probiotics and provides avenues for rationally designed tests of clinical applications.
Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways.
Specimen part
View SamplesThe peroxisome proliferator-activated receptor alpha (PPAR) is a fatty acid-activated transcription factor that governs a variety of biological processes. Little is known about the role of PPAR in the small intestine. Since this organ is frequently exposed to high levels of PPAR ligands via the diet, we set out to characterize the function of PPAR in small intestine using functional genomics experiments and bioinformatics tools. PPAR was expressed at high levels in both human and murine small intestine. Detailed analyses showed that PPAR was expressed highest in villus cells of proximal jejunum. Microarray analyses of total tissue samples revealed, that in addition to genes involved in fatty acid and triacylglycerol metabolism, transcription factors and enzymes connected to sterol and bile acid metabolism, including FXR and SREBP1, were specifically induced. In contrast, genes involved in cell cycle and differentiation, apoptosis, and host defense were repressed by PPAR activation. Additional analyses showed that intestinal PPAR dependent gene regulation occurred in villus cells. Functional implications of array results were corroborated by morphometric data. The repression of genes involved in proliferation and apoptosis was accompanied by a 22% increase in villus height, and a 34% increase in villus area of wild-type animals treated with WY14643. This is the first report providing a comprehensive overview of processes under control of PPAR in the small intestine. We show that PPAR is an important transcriptional regulator in small intestine, which may be of importance for the development of novel foods and therapies for obesity and inflammatory bowel diseases.
Genome-wide analysis of PPARalpha activation in murine small intestine.
Sex, Age, Specimen part
View SamplesGene expression regulation of transporters and phase I/II metabolic enzymes in murine small intestine during fasting
Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting.
Sex, Age, Specimen part
View SamplesSome commensal bacteria stimulate the immune system but do not present specific antigenicity. Such adjuvant effects have been reported for the bacterial species Lactobacillus plantarum. To study in vivo human responses to L. plantarum, a randomised double-blind placebo-controlled cross-over study was performed. Healthy adults were provided preparations of living and heat-killed L. plantarum bacteria, biopsies were taken from the intestinal mucosa and altered transcriptional profiles were analysed. Transcriptional profiles of human epithelia displayed striking differences upon exposure to living L. plantarum bacteria harvested at different growth phases. Modulation of NF-B-dependent pathways was central among the major altered cellular responses. This unique in vivo study shows which cellular pathways are associated with the induction of immune tolerance in mucosal tissues towards common adjuvanticity possessing lactobacilli.
Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance.
No sample metadata fields
View Samples