BACKGROUND:
Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw.
No sample metadata fields
View SamplesRaw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5.
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesRaw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with various weak organic acids
Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesImmune cell-specific expression is one indication of the importance of a gene's role in the immune response.
Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data.
Specimen part
View SamplesBCL6 inhibitor induces derepression of BCL6 target genes and shows a similar transcriptional program to BCL6 siRNA Overall design: Genome-wide profiling of mRNA transcript levels in human DLBCL cell line with BCL6 inhibitor and DMSO control.
Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma.
Specimen part, Subject
View SamplesRationale: The BCL6 oncogene is constitutively activated by chromosomal translocations and amplification in ABC-DLBCLs, a class of DLBCLs that respond poorly to current therapies. Yet the role of BCL6 in maintaining these lymphomas has not been investigated. BCL6 mediates its effects by recruiting corepressors to an extended groove motif. Development of effective BCL6 inhibitors requires compounds exceeding the binding affinity of these corepressors. Objectives: To design small molecule inhibitors with superior potency vs. endogenous BCL6 ligands for unmet putative therapeutic needs such as targeting ABC-DLBCL. Findings: We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor with 10-fold greater potency than endogenous corepressors. The compound, called FX1, binds in such a way as to occupy an essential region of the BCL6 lateral groove. FX1 disrupts BCL6 repression complex formation, reactivates BCL6 target genes, and mimics the phenotype of mice engineered to express BCL6 with lateral groove mutations. This compound eradicated established DLBCLs xenografts at low doses. Most strikingly, FX1 suppressed ABC-DLBCL cells as well as primary human ABC-DLBCL specimens ex vivo. Conclusions: ABC-DLBCL is a BCL6 dependent disease that can be targeted by novel inhibitors able to exceed the binding affinity of natural BCL6 ligands. Overall design: gene expression profiles of DLBCL cases
Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma.
Specimen part, Subject
View SamplesUsing stem cellbased therapies to treat retinal abnormalities is becoming a likely possibility; therefore, identifying the key factors and the relevant mechanisms controlling optic vesicle morphogenesis and neuroretina (NR) differentiation is important. Recent advances in self-organizing, 3-dimensional (3D) tissue cultures of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provided a valuable in vitro model for characterizing regulatory cascades and signaling pathways controlling mammalian retinal development. Using Rx-GFP expressing ESCs and Six3/ iPSCs we identified R-spondin 2 (Rspo2)-mediated repression of Wnt signaling as a novel required step during optic vesicle morphogenesis and NR differentiation. Furthermore, we also show that transient ectopic expression of Rspo2 in the anterior neural plate of transgenic mouse embryos was sufficient to arrest NR differentiation. ChIP assays identified Six3-responsive elements in the Rspo2-promoter region, indicating that Six3-mediated repression of Rspo2 is required to restrict Wnt signaling in the developing anterior neuroectoderm and allow eye development to proceed.
An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation.
Specimen part
View SamplesSparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P=6.2x10-13), including Atf3 (P=2.4x10-41), Penk (P=1.3x10-15), and Kcnq3 (P=3.1x10-12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory. Overall design: Biological replicates: Fear conditioned: n=14, No shock controls: n=4, Home cage controls:n=3. The contents 10 dVenus+ and 10 dVenus- cells were aspirated from each animal (biological replicate)
Engram-specific transcriptome profiling of contextual memory consolidation.
Specimen part, Cell line, Treatment, Subject
View SamplesThe significance of cardiac stem cell (CSC) populations for cardiac regeneration remains disputed. Here, we apply the most direct definition of stem cell function (the ability to replace lost tissue through cell division) to interrogate the existence of CSCs. By single-cell mRNA sequencing and genetic lineage tracing using two Ki67 knockin mouse models, we map all proliferating cells and their progeny in homoeostatic and regenerating murine hearts. Cycling cardiomyocytes were only robustly observed in the early postnatal growth phase, while cycling cells in homoeostatic and damaged adult myocardium represented various noncardiomyocyte cell types. Proliferative postdamage fibroblasts expressing follistatin-like protein 1 (FSTL1) closely resemble neonatal cardiac fibroblasts and form the fibrotic scar. Genetic deletion of Fstl1 in cardiac fibroblasts results in postdamage cardiac rupture. We find no evidence for the existence of a quiescent CSC population, for transdifferentiation of other cell types toward cardiomyocytes, or for proliferation of significant numbers of cardiomyocytes in response to cardiac injury. Overall design: We generated transciptome data from proliferative cardiac cells collected from 3, 7 or 14 days following myocardial infarction (MI) or sham surgery. This series includes single-cell transcriptome data from (Ki67-RFP+) cardiac cells collected from neonatal murine hearts, adult homeostatic murine hearts or adult murine hearts collected 14 days following myocardial infarction (MI), ischemic/perfusion (I/R) or sham surgery.
Profiling proliferative cells and their progeny in damaged murine hearts.
Specimen part, Subject, Time
View SamplesWe identified a tumor signature of 5 genes that aggregates the 156 tumor and normal samples into the expected groups. We also identified a histology signature of 75 genes, which classifies the samples in the major histological subtypes of NSCLC. A prognostic signature of 17 genes showed the best association with post-surgery survival time. The performance of the signatures was validated using a patient cohort of similar size
Gene expression-based classification of non-small cell lung carcinomas and survival prediction.
Sex, Specimen part
View Samples