refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 347 results
Sort by

Filters

Technology

Platform

accession-icon GSE4695
Changes in gene expression in dermal fibroblasts following exposure to Et1 peptide
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To determine if aberrant activation of endothelin-1 (Et1) could lead to the dysregulation of many downstream genes, we exposed fibroblasts to exogenous ET1 peptide and assayed for transcriptional changes by microarray. Mouse dermal fibroblasts were treated with exogenous Et1 peptide for 24 hours. ET1 treatment resulted in significant expression changes primarily downregulation of a number of genes. In particular, Tgf2 and Tgf3 were among the downregulated genes, which in turn alter the expression status of their many target genes. These data suggest that the stable silencing of Et1 is important for the phenotypic stability of dermal fibroblasts, and perhaps many other cell types as well.

Publication Title

Localized methylation in the key regulator gene endothelin-1 is associated with cell type-specific transcriptional silencing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74917
Expression data from Pseudomonas aeruginosa sbrR and sbrIR mutants versus wild type
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

SbrI and SbrR are an extracytoplasmic function sigma factor and its cognate anti-sigma factor, respectively. To identify the SbrIR regulon, we measured gene expression in wild type PAO1 , PAO1 sbrR, and PAO1 sbrIR mutants using microarrays.

Publication Title

σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77559
MAFG is a transcriptional repressor of bile acid synthesis and metabolism
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MAFG is a transcriptional repressor of bile acid synthesis and metabolism.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE77507
Differential gene expression following MafG overexpression
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Specific bile acids are potent signaling molecules that modulate metabolic pathways affecting lipid, glucose and bile acid homeostasis, and the microbiota. Bile acids are synthesized from cholesterol in the liver, and the key enzymes involved in bile acid synthesis (Cyp7a1, Cyp8b1) are regulated transcriptionally by the nuclear receptor FXR. We have identified an FXR-regulated pathway upstream of a transcriptional repressor that controls multiple bile acid metabolism genes. We identify MafG as an FXR target gene and show that hepatic MAFG overexpression represses genes of the bile acid synthetic pathway and modifies the biliary bile acid composition. In contrast, loss-of-function studies using MafG(+/-) mice causes de-repression of the same genes with concordant changes in biliary bile acid levels. Finally, we identify functional MafG response elements in bile acid metabolism genes using ChIP-seq analysis. Our studies identify a molecular mechanism for the complex feedback regulation of bile acid synthesis controlled by FXR

Publication Title

MAFG is a transcriptional repressor of bile acid synthesis and metabolism.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP069870
Feedback regulation of cholesterol metabolism by LeXis, a lipid-responsive non-coding RNA
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Abstract: The LXR and SREBP transcription factors are key regulators of cellular and systemic cholesterol homeostasis. The molecular mechanisms that integrate these pathways are incompletely understood. Here we show that ligand activation of LXRs in liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as an unexpected mediator of this effect. LeXis is robustly induced in mouse liver in response to western diet feeding or pharmacologic LXR activation. Expression of LeXis in liver inhibits cholesterol biosynthesis and lowers plasma cholesterol levels. Reciprocally, knockdown of LeXis increases hepatic cholesterol content and raises plasma cholesterol levels. LeXis interacts with the heterogeneous nuclear ribonucleoprotein Raly and regulates its binding to cholesterol biosynthetic gene promoters. These studies outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms orchestrating systemic sterol homeostasis. Overall design: Global RNA expression from primary hepatocytes treated with or without GW3965 were compared by RNA-Seq.

Publication Title

Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE15001
Gene expression in the Anopheles gambiae embryo
  • organism-icon Anopheles gambiae
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14993
Developmental time course of gene expression in Anopheles gambiae embryo
  • organism-icon Anopheles gambiae
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

In order to examine the gene expression in the course of mosquito embryogenesis, microarray assays were performed on staged A. gambiae embryos, from fertilization to 52 hours of development (which is close to hatching at ~50 hours post-fertilization). RNA was extracted from staged embryos roughly every three hours after fertilization, and then hybridized to the A. gambiae transcriptome microarray.

Publication Title

Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14851
Gene expression in the embryonic serosa of Anopheles gambiae
  • organism-icon Anopheles gambiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

Whole-genome transcriptome assays were performed with isolated serosa from A. gambiae embryos. These assays identified a large number of genes implicated in the production of the larval cuticle. In D. melanogaster, these genes are activated just once during embryogenesis, during late stages where they are used for the production of the larval cuticle. Evidence is presented that the serosal cells secrete a dedicated serosal cuticle, which protects A. gambiae embryos from desiccation.

Publication Title

Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076104
The DPYSL2 gene connects mTOR and schizophrenia
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report a transcriptome comparison of HEK293 cells modified at the DPYSL2 gene promoter dinucleotide repeat (chr8:26,435,510-26,435,534) by CRISPR/Cas9 to change from the common 11 repeats to the more rare 13 repeats Overall design: 11/11 repeat HEK 293 cells were modified by CRISPR/Cas 9. Cell were flow sorted by the co-transfected GFP and single cells were expanded. From those we selected 4 modified and 8 unmodified clones for RNA seq. RNA was extracted at 80% confluency

Publication Title

The DPYSL2 gene connects mTOR and schizophrenia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE44543
Expression data from mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Analysis of the transcriptome of -catenin flox/- mES cells in comparison with -catenin null mES cells or -catenin null mES cells stably transfected with an E-cadherin--catenin fusion protein.

Publication Title

E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact