STAT3, an essential transcription factor with pleiotropic functions, plays critical roles in the pathogenesis of autoimmunity. Despite recent data linking STAT3 with inflammatory bowel disease, exactly how it contributes to chronic intestinal inflammation is not known. Using a T cell transfer model of colitis we found that STAT3 expression in T cells was essential for the induction of both colitis and systemic inflammation. STAT3 was critical in modulating the balance of T helper 17 (Th17) and regulatory T (Treg) cells, as well as in promoting CD4+ T cell proliferation. We used chromatin immunoprecipitation and massive parallel sequencing (ChIP-Seq) to define the genome-wide targets of STAT3 in CD4+ T cells. We found that STAT3 bound to multiple genes involved in Th17 cell differentiation, cell activation, proliferation and survival, regulating both expression and epigenetic modifications. Thus, STAT3 orchestrates multiple critical aspects of T cell function in inflammation and homeostasis.
Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis.
Specimen part
View SamplesMutations in MECP2 cause Rett syndrome (RTT), a X-linked neurological disorder characterized by the regressive loss of neurodevelopmental milestones and acquired intellectual disability and motor impairments. However, the cellular heterogeneity of the mammalian brain impedes our understanding of how MECP2 mutations disrupt neuronal function and contribute to RTT. In response, we developed cell type-specific biotin tagging in mice bearing RTT-associated mutations and profiled nuclear transcriptomes in WT and mutant neurons. Although individual gene expression changes are largely specific to each mutation and cell type, higher-level transcriptional features remain conserved and correlate with RTT phenotypic severity. Furthermore, subcellular RNA populations support post-transcriptional compensation as a basis for the upregulation of long genes previously reported in RTT mutant neurons. Finally, we overcame the genetic mosacism associated with female RTT mouse models and identified functionally distinct gene expression changes in neighboring WT and mutant neurons, which altogether provide key contextual insights into RTT. Overall design: Nuclear total RNA-seq of two types of neurons of male and female RTT mice and GRO-seq of the cortex
Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation.
Specimen part
View SamplesBlimp-1 expression in T cells extinguishes the T follicular helper cell fate and drives terminal differentiation, but also limits autoimmunity. Although various factors have been described to control Blimp-1 expression in T cells, little is known about what regulates Blimp-1 expression in Th2 cells and the molecular basis of its actions. Herein, we report that STAT3 unexpectedly played a critical role in regulating Blimp-1 in Th2 cells. Furthermore, we found that the cytokine IL-10 acted directly on Th2 cells and was necessary and sufficient to induce optimal Blimp-1 expression through STAT3. Together, Blimp-1 and STAT3 amplified IL-10 production in Th2 cells, creating a strong autoregulatory loop that enhanced Blimp-1 expression. Increased Blimp-1 in T cells antagonized STAT5-regulated cell cycle and anti-apoptotic genes to limit cell expansion. These data elucidate the signals required for Blimp-1 expression in Th2 cells and reveal an unexpected mechanism of action of IL-10 in T cells, providing insights into the molecular underpinning by which Blimp-1 constrains T cell expansion to limit autoimmunity. Overall design: RNAseq of activated undifferentiated CD4 T cells with or without exogenous expression of Blimp-1.
IL-10 induces a STAT3-dependent autoregulatory loop in T<sub>H</sub>2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5.
Specimen part
View SamplesInterleukin 2 (IL-2), a cytokine linked to human autoimmune diseases, limits IL-17 production. We show that deletion of Stat3 in T cells abrogates IL-17 production and attenuates autoimmunity associated with IL-2 deficiency. While STAT3 induces IL-17 and RORt and inhibits Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORt. We found that STAT3 and STAT5 bound to multiple common sites across the Il17 genetic locus. The induction of STAT5 binding by IL-2 was associated with a reduction in STAT3 binding at these sites and the inhibition of associated active epigenetic marks. Titrating the relative activation of STAT3 and STAT5 modulated TH17 cell specification. Thus, the balance rather than the absolute magnitude of these signals determines the propensity of cells to make a key inflammatory cytokine.
Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5.
Specimen part
View SamplesMutations of STAT3 underlie the autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). STAT3 has critical roles in immune cells and thus, hematopoietic stem cell transplantation (HSCT), might be a reasonable therapeutic strategy in this disease. However, STAT3 also has critical functions in non-hematopoietic cells and dissecting the protean roles of STAT3 is limited by the lethality associated with germline deletion of Stat3. Thus, predicting the efficacy of HSCT for HIES is difficult. To begin to dissect the importance of STAT3 in hematopoietic and non-hematopoietic cells as it relates to HIES, we generated a mouse model of this disease. We found that these transgenic mice recapitulate multiple aspects of HIES, including elevated serum IgE and failure to generate Th17 cells. We found that these mice were susceptible to bacterial infection that was partially corrected by HSCT using wild type bone marrow, emphasizing the role played by the epithelium in the pathophysiology of HIES.
A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3.
Specimen part
View SamplesThe role of FoxP3+ regulatory T (Treg) cells in the maintenance of immunological tolerance is well established. Recently, genome-wide association studies (GWAS) in humans have associated polymorphisms within the BACH2 locus encoding the transcription factor BTB and CNC homology 1, basic leucine zipper transcription factor 2 (Bach2) with diverse allergic and autoimmune diseases including asthma, multiple sclerosis, Crohn's disease, celiac disease, generalized vitiligo and type 1 diabetes. Common to these diseases is a failure to adequately maintain immunological tolerance. However, a role for Bach2 in this process has not been established.Here, by assessing the phenotype of mice in which the Bach2 gene is disrupted, we demonstrate a non-redundant role for Bach2 in the prevention of a spontaneous lethal inflammatory disorder predominantly affecting the lung and gut with excessive T helper 2 (Th2) responses and formation of circulating autoantibodies. Bach2 was necessary for efficient induction of FoxP3 expression both during thymopoesis and upon stimulation of nave peripheral CD4+ T cells under Treg polarizing conditions in vitro. Consequently, in bone marrow reconstitution experiments, Bach2 expression within the haematopoetic system was necessary for suppression of lethal autoimmunity in a manner that was FoxP3 dependent. These findings demonstrate a requirement for Bach2 in early lineage commitment of both thymic and induced Treg cells and point to shared mechanisms that underlie diverse allergic and autoimmune disorders that may serve as targets in the development of novel therapeutic strategies.
BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis.
Sex, Specimen part
View SamplesVolunteers were assessed at study entry, the day of the third vaccination and 24, 72 hours, two weeks after vaccination, and 5 days after challenge. 13/39 vaccinees were protected and 26/39 were not protected. Eleven vaccinees exhibited delayed onset of parasitemia. All infectivity controls developed parasitemia. Prediction Analysis of Microarrays (PAM-R) identified genes corresponding with protection. Gene Set Enrichment Analysis (GSEA) identified sets of genes associated with protection after the third immunization, before challenge.
Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine.
Specimen part
View SamplesAnalysis of global gene expression profiles of flow cytometry-sorted, different pathogen-specific CD4+ T cell populations from the same peripheral blood mononuclear cells (PBMC), to identify molecular parameters that regulate differential susceptibilities of these CD4+ T cells to HIV infection. The results reveal distinct gene expression profiles between CMV-specific and tetanus toxoid/Candida-specific CD4+ T cells that involved selective upregulation of comprehensive innate antiviral
Distinct gene-expression profiles associated with the susceptibility of pathogen-specific CD4 T cells to HIV-1 infection.
Specimen part
View Samples