CD90+ prostate cancer-associated (CP) stromal cells represent a disease cell type found only in tumor tissue. Genetic reprogramming by induced pluripotent stem (iPS) cell technology might be used to normal gene expression of diseased cells thereby providing a cure. The resultant iPS cells would no longer express the disease program, and, like stem cells, might respond to normal differentiative signaling. Thus, CP stromal cells, isolated from tumor tissue and cultured in vitro, were transfected with POU5F1/LIN28/NANOG/SOX2 lentiviral vectors. iPS cells were obtained at a frequency of 10^4. Transcriptome analysis showed an almost complete match in gene expression between the iPS cells and human embryonic stem cells. Genes of CP stromal cells were fully inactivated.
Reprogramming of prostate cancer-associated stromal cells to embryonic stem-like.
Specimen part, Cell line, Treatment
View SamplesCharacterization of the gene expression profiles of specific cell populations of the human urinary bladder provides an important set of research tools for the study of cellular differentiation and the cancer process. The transcriptome is a definitive identifier of each individual cell types. Surgically resected tissue was digested by collagenase and the different cell types were sorted by antibodies to cluster designation (CD) cell surface antigens. The sorted cells were analyzed by DNA microarrays. The transcriptome datasets were analyzed for differentially expressed genes and plotted on a principal components analysis space for cell lineage relationship. The following bladder cell types were analyzed: CD9+ urothelial, CD104+ basal, CD13+ stromal of lamina propria, CD9+ urothelial carcinoma cancer, and CD13+ urothelial carcinoma-associated stromal. Gene expression differences between the cell types of tumor and their respective non-cancer counterpart provide biomarker candidates. Basal cells of the bladder and prostate, although sharing CD cell surface markers, are quite different in overall gene expression. Furthermore, these cells lack transcript features of stem cell signature of embryonic stem or embryonal carcinoma cells. Cell type-specific transcriptomes are more informative than bulk tissue transcriptomes. The relatedness of different cell types can be determined by transcriptome dataset comparison.
Bladder expression of CD cell surface antigens and cell-type-specific transcriptomes.
Specimen part
View SamplesThe prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. Isolation and characterization of viable populations of the constituent cell types of prostate tumors could provide valuable insight into the biology of cancer. The CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between normal and tumor-associated reactive stromal cells. Reactive stroma is characterized by smooth muscle differentiation, prostate down-regulation of SPOCK3, MSMB, CXCL13, and PAGE4, bladder down-regulation of TRPA1, HSD17B2, IL24, and SALL1, and an up-regulation of CXC-chemokines. This study identified a group of differentially expressed genes in CD90+ reactive stromal cells that are potentially involved in organ development and smooth muscle cell differentiation.
Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes.
Specimen part
View Samples