To identify genes associated with citrus peel development and manifestation of peel disorders, we analyzed flavedo, albedo and juice sac tissues from five types of citrus fruit including, mandarin orange, navel orange, valencia orange, grapefruit and lemon.
Transcriptome and metabolome analysis of citrus fruit to elucidate puffing disorder.
Specimen part
View SamplesTo identify genes associated with citrus peel development and manifestation of peel disorders, we analyzed flavedo, albedo and juice sac tissues from navel orange displaying, and not displaying, the puff disorder.
Transcriptome and metabolome analysis of citrus fruit to elucidate puffing disorder.
Specimen part
View SamplesThe overall goal of this project is to investigate the role of TGF-beta signaling in epithelial cells as it pertains to the orientation of muscle fibers in the soft palate during embryogenesis. Here, we first conducted gene expression profiling of the anterior and posterior portions of the palate from wild-type mice. In addition, we also conducted gene expression profiling of the posterior palate in mutant mice with an epithelium-specific conditional inactivation of the Tgfbr2 gene. The latter mice provide a model of submucosal cleft palate, which is a congenital birth defect commonly observed in many syndromic conditions.
TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.
Sex, Specimen part
View SamplesBackground: Breast cancer patients present lower 1,25(OH)2D3 or 25(OH)D3 serum levels than unaffected women. Although 1,25(OH)2D3 pharmacological concentrations of 1,25(OH)2D3 may exert antiproliferative effects in breast cancer cell lines, much uncertainty remains about the effects of calcitriol supplementation in tumor specimens in vivo. We have evaluated tumor dimension (ultrassonography), proliferative index (Ki67 expression), 25(OH)D3 serum concentration and gene expression profile, before and after a short term calcitriol supplementation (dose to prevent osteoporosis) to post-menopausal patients. Results: Thirty three patients with operable disease had tumor samples evaluated. Most of them (87.5%) presented 25(OH)D3 insufficiency (<30 ng/mL). Median period of calcitriol supplementation was 30 days. Although tumor dimension did not vary, Ki67 immunoexpression decreased after supplementation. Transcriptional analysis of 15 matched pre/post-supplementation samples using U133 Plus 2.0 GeneChip (Affymetrix) revealed 18 genes over-expressed in post-supplementation tumors. As a technical validation procedure, expression of four genes was also determined by RT-qPCR and a direct correlation was observed between both methods (microarray vs PCR). To further explore the effects of near physiological concentrations of calcitriol on breast cancer samples, an ex vivo model of fresh tumor slices was utilized. Tumor samples from another 12 post-menopausal patients were sliced and treated in vitro with slightly high concentrations of calcitriol (0.5nM), that can be attained in vivo, for 24 hours In this model, expression of PBEF1, EGR1, ATF3, FOS and RGS1 was not induced after a short exposure to calcitriol. Conclusions: In our work, most post-menopausal breast cancer patients presented at least 25(OH)D3 insufficiency. In these patients, a short period of calcitriol supplementation may prevent tumor growth and reduce Ki67 expression, probably associated with discrete transcriptional changes. This observation deserves further investigation to better clarify calcitriol effects in tumor behavior under physiological conditions.
Calcitriol supplementation effects on Ki67 expression and transcriptional profile of breast cancer specimens from post-menopausal patients.
Sex, Age, Specimen part
View SamplesWe demonstrated that, four weeks after the pulmonary artery banding (PAB) operation, rats could be divided into two groups: an F+ group in which the fibrotic area occupied more than 6.5% of the whole area of the heart tissues, and an F- group in which the fibrotic area occupied less than 6.5% of this area.
Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1.
Sex, Specimen part
View SamplesWe describe a critical role for Cdk6 in JAK2V617F+ MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival of JAK2V617F fl/+ vav-Cre mice. The Cdk6 protein interferes with three hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes NFkB signaling and contributes to cytokine production while inhibiting apoptosis. The treatment with palbociclib did not mirror these effects, showing that the functions of Cdk6 in MPN pathogenesis are largely kinase-independent. Overall design: LSK-sorted (FACS) bone marrow cells from 8-week-old VavCre;Jak2+/+; Cdk6+/+, VavCre;Jak2V617F; Cdk6+/+, VavCre;Jak2V617F; Cdk6-/-, VavCre; Jak2+/+; Cdk6-/- mice, and the same cell type from palbociclib-treated (38mg/kg, 3x in one week) VavCre;Jak2V617F; Cdk6+/+ mice, n=3 for all genotypes
CDK6 coordinates <i>JAK2</i> <sup><i>V617F</i></sup> mutant MPN via NF-κB and apoptotic networks.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Androgen-induced Long Noncoding RNA (lncRNA) SOCS2-AS1 Promotes Cell Growth and Inhibits Apoptosis in Prostate Cancer Cells.
Specimen part, Cell line
View SamplesProstate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified a novel androgen-regulated long non-coding (lnc) RNA, SOCS2-AS1.
Androgen-induced Long Noncoding RNA (lncRNA) SOCS2-AS1 Promotes Cell Growth and Inhibits Apoptosis in Prostate Cancer Cells.
Specimen part, Cell line
View SamplesEnsuring cooperation among formerly autonomous cells has been a central challenge in the evolution of multicellular organisms. One solution is monoclonality, but this option does not eliminate genetic and epigenetic variability, leaving room for exploitative behavior. We therefore hypothesized that embryonic development must be protected by robust regulatory mechanisms that prevent aberrant clones from superseding wild-type cells. Using a genome-wide screen in murine induced pluripotent stem cells, we identified a network of genes (centered on p53, topoisomerase 1, and olfactory receptors) whose downregulation caused the cells to replace wild-type cells, both in vitro and in the mouse embryowithout perturbing normal development. These genes thus appear to fulfill an unexpected role in fostering cell cooperation.
Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen.
Specimen part, Treatment
View SamplesTo recruit phagocytes, apoptotic cells characteristically release ATP, which functions as a danger signal. Here, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as NR4A and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into AdoR A2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a calm down signal.
Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.
Sex, Age, Specimen part
View Samples