Protein binding is essential to the transport, decay and regulation of almost all RNA molecules. However, the structural preference of protein binding on RNAs and their cellelar functions and dynamics upon changing environmental condictions are poorly understood. Here, we integrated various high-throughput data and introduced a computational framework to describe the global interactions between RNA binding proteins (RBPs) and structured RNAs in yeast at single-nucleotide resolution. We found that on average, in terms of percent total lengths, ~15% of mRNA untranslated regions (UTRs), ~37% of canonical ncRNAs and ~11% of long ncRNA (lncRNAs) are bound by proteins. The RBP binding sites, in general, tend to occur at single-stranded loops, with evolutionarily conserved signatures, and often facilitate a specific RNA structure conformation in vivo. We found that four nucleotide modifications of tRNA are significantly associated with RBP binding. We also identified various structural motifs bound by RBPs in the UTRs of mRNAs, associated with localization, degradation and stress responces. Moreover, we identified >200 novel lncRNAs bound by RBPs, and about half of them contain conserved secondary structures. We present the first ensemble pattern of RBP binding sites in the structured noncoding regions of a eukaryotic genome, emphasizing their structural context and cellular functions. Overall design: Duplicate gPAR-CLIP libraries were sequenced from yeast strains for each of three conditions: log-phase growth, growth after 2 hour glucose starvation, and growth after 2 hour nitrogen starvation. polyA RNAs were isolated for all conditions. Total RNA were isolated from log phase growth conditions. Sucrose gradient fractionation was performed: some RNAs were isolated from the "light" fraction (lighter than 40S ribosome) and some from the "heavy" fraction. gPAR-CLIP libraries were used to determine regions of RNA bound by proteins.
Global signatures of protein binding on structured RNAs in Saccharomyces cerevisiae.
Cell line, Subject
View SamplesAdiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24-72 h), pulmonary neutrophilic inflammation is augmented in adiponectin deficient mice. The purpose of this study was to use microarrays to examine the impact of adiponectin deficiency on changes in pulmonary gene expression induced by ozone, a common air pollutant.
Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice.
Sex, Specimen part
View SamplesWhole transcriptome analysis of circulating B cells from multiple sclerosis (MS) patients and healthy donors (HD).
Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients.
Specimen part, Disease
View SamplesPHF8 exerts distinct functions in different types of cancer. However, the mechanisms underlying its specific functions in each case remain obscure. To establish whether overexpression of PHF8 regulates the TGF-ß induced the epithelial-mesenchymal transition (EMT), we treated MCF10A-Mock (control) and MCF10A-PHF8wt (overexpressing wild-type PHF8) cells with TGF-ß1 for 0, 24, 48 and 72 hours and performed RNA-seq in biological duplicates. Our data indicated that EMT gene signatures were significantly enriched in MCF10A-PHF8 cells with TGF-ß1 treatment at all time points, strongly indicating that PHF8 overexpression induces a sustained EMT signaling program. Overall design: mRNA profiles of MCF10A-Mock (control) and MCF10A-PHF8 with TGF-ß1 treatment for 0, 24, 48 and 72 hours were generated by RNA-seq, in duplicate, using HiSeq2500 instrument.
Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis.
No sample metadata fields
View SamplesPurpose: We have succeeded in the generation and long-term expansion of SOX9-expressing CD271+PDGFRa+CD73+ chondrogenic ectomesenchymal cells from the PAX3/SOX10/FOXD3-expressing MIXL1-CD271hiPDGFRaloCD73- neural crest-like progeny of human pluripotent stem cells in a chemically defined medium supplemented with Nodal/Activin/TGFb inhibitor (SB) and FGF2 (hereafter called FSB). When “primed” with TGFb, such cells efficiently formed translucent cartilage particles, which were completely mineralized in 12 weeks in immunocompromized mice. Under the FSB condition, ectomesenchymal cells were expandable without loss of chondrogenic potential for at least 16 passages, maintained normal karyotype for at least 10 passages, which any conditions deviated from it (e.g. FGF2 alone or SB alone) failed to support. In order to address the molecular basis of such effects of FSB, a series of RNA-seq experiments were carried out. Methods: We generated and compared the transcriptome profiles of human ectomesenchymal cells expanded under FSB with those cultured under FSB first then under FGF2 alone (F). As a control, we also generated transcriptome of ectomesenchymal cells expanded from the begining under F conditions. RNA-sequencing libraries were prepared using a SureSelect Strand Specific RNA Library Preparation kit (Agilent technologies, Santa Clara, CA). Sequencing was performed on an Illumina HiSeq 1500 using a TruSeq Rapid SBS kit (Illumina, San Diego, CA) in a 50-base single-end mode. Sequenced reads were mapped against the human reference genome (GRCh37), using TopHat v2.0.12 (http://ccb.jhu.edu/software/tophat/index.shtml). Expression levels were calculated as fragments per kilobase of exon per million mapped fragments (FPKMs) using Cufflinks v2.1.1 (http://cole-trapnell-lab.github.io/cufflinks). Results: Ectomesenchymal cells maintained under FSB conditions preferentially expressed genes representing embryonic progenitors (SOX4/12, LIN28A/B, MYCN), cranial mesenchymes (ALX1/3/4) and chondroprogenitors (SOX9, COL2a1) of the neural crest origin (SOX8/9, NGFR, NES). In contrast, those cultured under FSB then F, still expressed SOX4/11/12, but lost LIN28, MYCN, ALX1/3/4, NGFR, COL2a1 expression. Interestingl it enhances expresion ofTGFß-inducible genes such as THBS1/2 and DCN and osteogenesis-related genes such as COL1a1/2 and RUNX1/2. Conclusions: The CD271+CD73+ ectomesenchymal cells accumulated under FSB conditions possess an mRNA profile of proliferating primitive neural crest/ectomesenchymal cells, although they lacked SOX10 expression, which is critical for neural and melanocytic lineage commitment. Transition from FSB to F conditions supressed the proliferation-related genes expression and enhanced the ossification/mineralization, vasculogenesis/angiogenesis, and cardiac myogenesis-related gene expression. Thus, suppression of TGFß signaling by SB does not seem to freeze the developmental stage of the hPSC-derived neural crest during expansion. Such suppression may instead simply support the high proliferative potential of the cells as well as the expression of SOX9 (and COL2a1), and thereby maintain chondrogenic activity. SOX9 expression initiated at the specification and pre-migratory stages is transient in trunk neural crest but persists in cranial neural crest. The chondrogenic CD271+CD73+ ectomesenchymal cells that maintain SOX9 transcription and translation may therefore represent proliferating cranial neural crest, with a slight commitment to non-neural lineages. Overall design: Examination of human ES-derived neural crest-like progenies expanded in 3 different culture media. Each group contains three biological replicates.
Long-term expandable SOX9+ chondrogenic ectomesenchymal cells from human pluripotent stem cells.
No sample metadata fields
View SamplesTotal RNA from trichomes of fifth and sixth rosette leaves of three-week-old wild-type and gtl1-1 mutants (Figure 3B) were extracted. We found a total number of 1,759 genes, corresponding to 1,694 probes on the ATH1 chip, that show differential expression of at least 1.3-fold. Out of these 1,694 genes, 47.2% are positively regulated and 52.8% are negatively regulated by GTL1.
Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth.
Specimen part
View SamplesTelogen (resting phase) hair follicles are more radioresistant than anagen (growth phase) ones. Irradiation of BALB/c mice in the anagen phase with -rays at 6 Gy induced hair follicle dystrophy, whereas irradiation in the telogen phase induced the arrest of hair follicle elongation without any dystrophy after post-irradiation depilation. In contrast, FGF18 was highly expressed in the telogen hair follicles to maintain the telogen phase and also the quiescence of hair follicle stem cells. Therefore, the inhibition of FGF receptor signaling at telogen induced the dystrophy after post-irradiation depilation. In addition, the administration of recombinant FGF18 suppressed cell proliferation in the hair follicles and enhanced the repair of radiation-induced DNA damage, so FGF18 protected the anagen hair follicles against radiation damage to enhance hair regeneration. Moreover, FGF18 reduced the expression of cyclin B1 and cdc2 in the skin and FGF18 signaling induced G2/M arrest in the keratinocyte cell line HaCaT, although no obvious change of the expression of DNA repair genes was detected by DNA microarray analysis. These findings suggest that FGF18 signaling for the hair cycle resting phase causes radioresistance in telogen hair follicles by arresting the proliferation of hair follicle cells.
FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling.
Sex, Specimen part
View SamplesIn order to investigate the function of heme in the regulation of gene expression, we herein examined variations in mRNA levels in ALA-treated cells from control conditions. A comprehensive anal- ysis by RNA sequencing showed marked changes in the expression of various genes. Among the different amounts of mRNA, we identified the novel heme-inducible protein, SRRD. The plant ho- mologue Sensitivity to Red Light Reduced (SRR1) was previously reported to be involved in the regulation of the circadian clock and phytochrome B signaling in Arabidopsis thaliana. We found that SRRD regulated not only heme biosynthesis, but also the expression of clock genes. The involvement of SRRD in the prolif- eration of cells was also demonstrated. Overall design: Examination of ALA-treated versus untreated NIH3T3 cells.
The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms.
Cell line, Subject
View SamplesThe gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. The process by which the commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation, anti-microbial defenses, and tissue repair, and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Control of Th17 cell differentiation by SFB may thus establish a balance between optimal host defense preparedness and potentially damaging T cell responses. Manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.
Induction of intestinal Th17 cells by segmented filamentous bacteria.
Specimen part
View SamplesNCCs and NCC-derived MSCs were induced from FOP-iPSCs and control iPSCs, and their expresion profiles were compared.
Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.
Specimen part
View Samples