Transcriptome study of 2 Saccharomyces cerevisiae W303 derivatives, one carrying GFP (control) and one carrying aSyn-GFP
Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms.
Specimen part, Disease, Cell line
View SamplesTissue repair is a subset of a broad repertoire of IL-4/IL-13-dependent host responses during helminth infections. Here, we show that IL-4/IL-13 alone were not sufficient, but IL-4/IL-13 together with apoptotic cells induced the tissue repair program in macrophages. Genetic ablation of sensors of apoptotic cells impaired the proliferation of tissue-resident macrophages and induction of anti-inflammatory/tissue repair genes in the lung following helminth infection or the damage caused by induction of colitis in the gut. In contrast, recognition of apoptotic cells was dispensable for cytokine-dependent induction of pattern recognition receptor, cell adhesion or chemotaxis genes in macrophages. Detection of apoptotic cells can therefore spatially compartmentalize or prevent premature or ectopic activity of pleiotropic, soluble cytokines, such as IL-4/IL-13. Overall design: RNA sequencing of lung resident macrophages from WT and Axl-/-Mertk-/- mice upon infection with N. brasiliensis
Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells.
Age, Specimen part, Cell line, Subject
View SamplesBackground: Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated.
Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development.
No sample metadata fields
View SamplesEnforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell (HSC) self-renewal and expansion ex vivo and in vivo. In order to investigate the largely unknown downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line, EML. Gene expression differences were compared between KLS (c-Kit+, Lin-, Sca-1+)-EML cells that overexpressed HOXB4 (KLS-EML-HOXB4) to control KLS-EML cells that were transduced with vector alone. ChIP-chip was used to identify promoter regions bound by HOXB4.
Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells.
No sample metadata fields
View SamplesBoth bone morphogenetic proteins (BMPs) and histone deacetylases (HDACs) have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling. Using neurospheres from the embryonic striatum as an in vitro system to analyze this phenomenon, we have performed microarray expression profiling on BMP2- and trichostatin A (TSA)-treated cultures, followed by validation of the findings with quantitative RT-PCR and protein analysis.
Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain.
Specimen part, Treatment
View SamplesFoxp1/4 transcription factors are conserved transcriptional repressors expressed in overlapping patterns during lung development as well as in the adult lung. However, the role of Foxp1/4 in development and homeostasis of the pseudostratified epithelium of the proximal airways and trachea is unknown.
Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2.
Specimen part
View SamplesIdentification of TBF1-dependent and SA, elf18-responsive genes in Arabidopsis
The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition.
Specimen part, Treatment
View SamplesRecent advances in multiple whole genome technologies provide unprecedented opportunities to profile epigenomic signatures in cancer cells. Previously we used a human gene promoter tiling microarray platform to identify genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. Interestingly, the clustered nature of epigenetic targets that we identified, along with our concurrent karyotype analyses, have now led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy) may be superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes.
Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.
Cell line
View SamplesThe ZFP36L3 protein is a rodent-specific, placenta- and yolk sac-specific member of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins. These proteins bind to AU-rich elements in target mRNAs, and promote their deadenylation and decay. Mice deficient in ZFP36L3 exhibited decreased neonatal survival rates, but no apparent morphological changes in the placenta or surviving offspring. Zfp36l3 is paternally imprinted, with profound parent-of-origin effects on gene expression. RNASeq of KO placental mRNA revealed many significantly affected transcripts, some of which exhibited decreased decay rates in differentiated trophoblast stem cells derived from KO blastocysts. The type 1 transferrin receptor mRNA was unexpectedly decreased in KO placentas, despite an increase in its stability. This receptor is critical for placental iron uptake from the maternal circulation, and its decrease was accompanied by decreased iron stores in the KO fetus, suggesting that this intrauterine deficiency might have deleterious consequences in later life. Overall design: Examination of gene expression differences in yolk sac tissue between wild-type and knockout mice groups with 4 biological replicates in each group
Deficiency of the placenta- and yolk sac-specific tristetraprolin family member ZFP36L3 identifies likely mRNA targets and an unexpected link to placental iron metabolism.
No sample metadata fields
View SamplesExtracellular RNAs (exRNAs) in blood and other biofluids have attracted great interest as potential biomarkers in liquid biopsy applications, as well as for their potential biological functions. Whereas it is well-established that extracellular microRNAs are present in human blood circulation, the degree to which messenger RNAs (mRNA) and long noncoding RNAs (lncRNA) are represented in plasma is less clear. Here we report that mRNA and lncRNA species are present as small fragments in plasma that are not detected by standard small RNA-seq methods, because they lack 5'-phosphorylation or carry 3'-phosphorylation. We developed a modified sequencing protocol (termed "phospho-sRNA-seq") that incorporates upfront RNA treatment with T4 polynucleotide kinase (which also has 3' phosphatase activity) and compared it to a standard small RNA-seq protocol, using as input both a pool of synthetic RNAs with diverse 5' and 3' end chemistries, as well exRNA isolated from human blood plasma. Using a custom, high-stringency pipeline for data analysis we identified mRNA and lncRNA transcriptome fingerprints in plasma, including multiple tissue-specific gene sets. In a longitudinal study of hematopoietic stem cell transplant (HSCT) patients, we found different sets corresponding to bone marrow- and liver- enriched genes, which tracked with bone marrow recovery or liver injury, providing proof-of-concept validation of this method as a biomarker approach. By accessing a previously unexplored realm of mRNA and lncRNA fragments in blood plasma, phospho-sRNA-seq opens up a new space for plasma transcriptome-based biomarker development in diverse clinical settings. Overall design: ExRNA-seq libraries were prepared from platelet-poor plasma obtained from serial blood draws collected from two individuals undergoing bone marrow transplantation. A total of 11 samples were collected from each individual, starting prior to chemotherapy/ratiation treatment (approximately 7 days pre-HSCT) the day of transplant, and then weekly up to approximately Day 63.
Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma.
No sample metadata fields
View Samples