The virB operon, encoding a Type IV secretion system (T4SS), is essential for intracellular survival and persistent infection of Brucella spp. To better understand the role of the T4SS in evading host defense mechanisms and establishing chronic infection, we compared transcriptional profiles of the host response to infection with wild type Brucella strains and strains that fail to express the virB genes. Analysis of host gene expression profiles three days after inoculation with wild type Brucella strains revealed an inflammatory response dominated by interferon-induced genes. This analysis found that not only the type II but also type I interferon pathway was elicited by Brucella infection. Real time RT-PCR showed that a group of genes from these pathways was induced by day 3 post-infection and declined to baseline levels by day 7. In contrast, neither of the two virB mutant strains elicited expression of interferon-induced genes, demonstrating that the T4SS was required to trigger an inflammatory response early during infection.
Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice.
No sample metadata fields
View SamplesSalmonella enterica serotype Typhimurium causes an acute inflammatory reaction in the cecum of streptomycin pre-treated mice. We determined global changes in gene expression elicited by serotype Typhimurium in the cecal mucosa. The gene expression profile was dominated by T cell derived cytokines and genes whose expression is known to be induced by these cytokines. Markedly increased mRNA levels of interferon (IFN-gamma), interleukin-22 (IL-22) and IL-17 were detected by quantitative real-time PCR. Furthermore, mRNA levels of genes whose expression is induced by IFN-gamma, IL-22 or IL-17, including macrophage inflammatory protein 2 (MIP-2), inducible nitric oxide synthase (Nos2), lipocalin-2, MIP-1alpha, MIP-1beta, and keratinocyte-derived cytokine (KC), were also markedly increased. To assess the importance of T cells in orchestrating this pro-inflammatory gene expression profile, we depleted T cells using a monoclonal antibody prior to investigating cecal inflammation caused by serotype Typhimurium in streptomycin pre-treated mice. Depletion of CD3+ T cells resulted in a dramatic reduction in gross pathology, a significantly reduced recruitment of neutrophils and a marked reduction in mRNA levels of IFN-gamma, IL-22, IL-17, iNOS, lipocalin-2 and KC. Our results suggest that T cells play an important role in amplifying inflammatory responses induced by serotype Typhimurium in the cecal mucosa.
T cells help to amplify inflammatory responses induced by Salmonella enterica serotype Typhimurium in the intestinal mucosa.
No sample metadata fields
View SamplesComparison of treatment sensitive GSC clones (TSGC) with treatment resistant GSC clones (TRGC). We used microarrays to identify molecular signatures of TRGC (upregulated genes).
Protective properties of radio-chemoresistant glioblastoma stem cell clones are associated with metabolic adaptation to reduced glucose dependence.
Specimen part
View SamplesComparison of parental GSC (GSC-parental) with treatment resistant GSC clones survived 500uM TMZ treatment (GSC-500uM TMZ)
Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-glioblastoma stem cells to clinically relevant dose of temozolomide.
Cell line, Treatment
View SamplesThe origin and function of human double negative (DN) TCR-alpha/beta T cells is unknown. They are thought to contribute to the pathogenesis of systemic lupus erythematosus because they expand and accumulate in inflamed organs. Here we provide evidence that human TCR-alpha/beta CD4- CD8- DN T cells derive exclusively from activated CD8+ T cells. Freshly isolated TCR-alpha/beta DN T cells display a distinct gene expression and cytokine production profile. DN cells isolated from peripheral blood as well as DN cells derived in vitro from CD8+ T cells, produce a defined array of pro-inflammatory mediators that includes IL-1, IL-17, IFN-gama, CXCL3, and CXCL2. These results indicate that, upon activation, CD8+ T cells have the capacity to acquire a distinct phenotype that grants them inflammatory capacity.
Human TCR-alpha beta+ CD4- CD8- T cells can derive from CD8+ T cells and display an inflammatory effector phenotype.
Specimen part
View SamplesWe report the application of RNA-seq analysis for high-throughput profiling of murine lungs infected with Aspergillus fumigatus. We compared the lung transcription of wildtype murine lungs and lungs from mice deficient in metabolic cytokine adiponectin. Overall design: Examination of 2 different mice strain and comparison of lung transcripts in response to Aspergillus fumigatus infection.
The Metabolic Cytokine Adiponectin Inhibits Inflammatory Lung Pathology in Invasive Aspergillosis.
Specimen part, Cell line, Subject
View SamplesLipotoxicity is a metabolic disorder that results from accumulation of lipids, particularly fatty acids, in non-adipose tissue leading to cellular dysfunction, lipid droplet formation, and cell death. Our studies indicate for the first time that the neurovascular circulation also can manifest lipotoxicity, which could have major effects on cognitive function. The penetration of integrative systems biology approaches is limited in this area of research, which reduces our capacity to gain an objective insight into the signal transduction and regulation dynamics at a systems level.
A systems biology analysis of brain microvascular endothelial cell lipotoxicity.
Specimen part
View SamplesA transgenic mouse was generated using a CD2-driven transgene containing the cDNA of Ppp2ca to achieve over-expression of PP2Ac in T cells. Nave CD4 T cells were isolated and lysed at times 0, 6, and 24 hours after stimulation with anti-CD3 and anti-CD28
Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling.
No sample metadata fields
View SamplesUnderstanding genome and gene function in a whole organism requires us to fully comprehend the life cycle and the physiology of the organism in question. Caenorhabditis elegans XX animals are hermaphrodites that exhaust their sperm after 3 d of egg-laying. Even though C. elegans can live for many days after cessation of egg-laying, the molecular physiology of this state has not been as intensely studied as other parts of the life cycle, despite documented changes in behavior and metabolism. To study the effects of sperm depletion and aging of C. elegans during the first 6 d of adulthood, we measured the transcriptomes of first-day adult hermaphrodites and sixth-day sperm-depleted adults, and, at the same time points, mutant fog-2(lf) worms that have a feminized germline phenotype. We found that we could separate the effects of biological aging from sperm depletion. For a large subset of genes, young adult fog-2(lf) animals had the same gene expression changes as sperm-depleted sixth-day wild-type hermaphrodites, and these genes did not change expression when fog-2(lf) females reached the sixth day of adulthood. Taken together, this indicates that changing sperm status causes a change in the internal state of the worm, which we call the female-like state. Our data provide a high-quality picture of the changes that happen in global gene expression throughout the period of early aging in the worm. Overall design: 4 conditions; 3 samples per condition. Young adults are 1d old adults without visible eggs. Aged adults are 6th day adults, post-egg-laying. The fog-2 mutant strain used was JK574
The <i>Caenorhabditis elegans</i> Female-Like State: Decoupling the Transcriptomic Effects of Aging and Sperm Status.
Cell line, Subject
View SamplesBackground and Aims: Although the zinc finger transcription factor GATA4 has been implicated in regulating jejunal gene expression, the contribution of GATA4 in controlling jejunal physiology has not been addressed. Methods: We generated mice in which the Gata4 gene was specifically deleted in the small intestinal epithelium. Measurements of plasma cholesterol and phospholipids, intestinal absorption of dietary fat and cholesterol, and gene expression were performed on these animals. Results: Mice lacking GATA4 in the intestine displayed a dramatic block in their ability to absorb cholesterol and dietary fat. Comparison of the global gene expression profiles of control jejunum, control ileum, and GATA4 null jejunum by gene array analysis demonstrated that GATA4 null jejunum lost expression of 53% of the jejunal-specific gene set and gained expression of 47% of the set of genes unique to the ileum. These alterations in gene expression included a decrease in mRNAs encoding lipid and cholesterol transporters as well as an increase in mRNAs encoding proteins involved in bile acid absorption. Conclusion: Our data demonstrate that GATA4 is essential for jejunal function including fat and cholesterol absorption and confirm that GATA4 plays a pivotal role in determining jejunal versus ileal identity.
GATA4 is essential for jejunal function in mice.
No sample metadata fields
View Samples